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Abstract—The popularity and proliferation of electric scoot-
ers (e-scooters) as a micromobility solution in our cities and
urban communities has been rapidly rising. Rent-by-the-minute
pricing and a healthy competition between micromobility service
providers is also benefiting riders with low trip costs. However,
an unprepared urban infrastructure, combined with uncertain
operation policies and poor regulation enforcement, has resulted
in e-scooter riders encroaching public spaces meant for pedestri-
ans, thus causing significant safety concerns both for themselves
and the pedestrians. As a consequence, it has become critical to
understand the current state of pedestrian safety in our urban
communities vis-à-vis e-scooter services, identify factors that
impact pedestrian safety due to such services, and determine
how to support pedestrian safety going forward. Unfortunately,
to date there have been no realistic, data-driven efforts within the
research community that address these issues. In this work, we
conduct a field study to empirically investigate and characterize
new safety issues that arise due to the introduction of e-scooter
services, from the pedestrians’ perspective. By crowd-sensing
real-time encounter data between e-scooters and pedestrian
participants on two urban university campuses over a three-
month period, we uncover encounter statistics and mobility
trends that could identify potentially unsafe spatio-temporal
zones for pedestrians. This first-of-its-kind work also provides
a blueprint on how crowd-sensed micromobility data can enable
similar safety-related studies in other urban communities.

I. INTRODUCTION

One of the biggest challenges faced by cities due to popu-
lation growth and density is the transportation of commuters
and intra-city travelers, especially over short non-walkable
distances [1]. A lack of adequate and/or frequent public-
transportation infrastructure has partially catalyzed this situ-
ation in many cities [2], which has resulted in increased use
of personal automobiles, thus causing additional congestion on
the roads. In addition to a sub-standard commute experience,
this has also contributed to quality of life challenges, including
an increase in air pollution levels with concomitant health and
environmental problems [3], collisions [4] and economic waste
[5]. Due to these escalating problems with intra-city trans-
portation, cities have deployed pilots and fully implemented
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systems of personal and service provider-owned electric or
battery-powered micromobility vehicles.

Micromobility is an umbrella term used to describe a novel
category of transportation using non-conventional battery-
powered vehicles aimed at shrinking the physical and envi-
ronmental footprint required for quickly moving people over
relatively short distances. Electric scooters (or e-scooters) [6]
currently constitute the most popular class of micromobility
vehicle [7], which are designed for travel over distances that
are too close to drive or utilize public transportation yet
too far to walk [8]. Moreover, due to their small physical
footprint, such vehicles provide a convenient means to navigate
around a city with congested roads and sidewalks, thus making
them a popular last-mile transportation solution in urban
areas [9]. Last-mile transportation bridges the gap between
conventional transportation hubs (such as a bus stop, train
station and parking lot) and final destinations (such as a
workplace, home, school, and shopping center), which is es-
pecially appealing in cities where conventional transportation
options are not abundantly distributed. The popularity of e-
scooters has been further accelerated by a growing number
of service providers that offer these vehicles on rent-by-
the-minute schemes, wherein the riders do not have to bear
the upfront purchase and maintenance costs of owning such
vehicles. Other aspects of e-scooter services that make them
appealing to urban commuters include easy service accessibil-
ity through a smartphone application, flexibility in trip start
and endpoints, ease of vehicle geo-location, the flexibility of
drop-off options with no parking fees, a simplified and intuitive
riding process which requires no pre-training and license to
operate, and negligible environmental impact compared to
fossil-fuel powered automobiles [10].

However, as with any disruptive new technology, unforeseen
problems have surfaced with or due to such e-scooter services.
For instance, many city administrators and planners have
been unable to cope with the sudden influx of e-scooters in
their jurisdictions, and as a result, many urban jurisdictions
have have had very lenient or no regulations on how these
vehicles should be operated. As a result, e-scooter riders often
end up encroaching road infrastructure meant for pedestrians,
thus causing significant safety concerns both for themselves
and the pedestrians [11]. Given that pedestrians face risks
such as walking alongside riders traveling at high speeds and
navigating around hazardously parked or standing vehicles on
sidewalks, it is not surprising that a considerable number of
reported micromobility vehicle incidents involve some form
of collision with pedestrians [12]. Furthermore, a study in

ar
X

iv
:s

ub
m

it/
31

73
23

6 
 [

cs
.C

Y
] 

 1
2 

M
ay

 2
02

0



2

Brisbane (Australia) found that nearly half of the shared e-
scooter trips involved riding illegally in some way, such as
riding on roads where it is not allowed, doubling with a
passenger, or not wearing helmets (when required) [13].

Thus, a critical issue that administrators, policymakers, and
stakeholders in our urban communities need to address in a
timely fashion is “how can pedestrians safely co-exist with
e-scooters and e-scooters riders?” As part of this overarching
question, answers to specific questions such as “what is the
current state of pedestrian safety vis-à-vis e-scooter services in
urban communities?”, “which factors impact pedestrian safety
in such services?”, and “how to support pedestrian safety
going forward?” are urgently needed. Public opinion both for
and against such services has been highly polarizing which
has resulted in abrupt responses from city administrators (e.g.,
some have welcomed e-scooters, while others have outright
banned them [14], [15], [13]) without clear justifications that
are based on empirical data and analysis. Our position is
that before making any policy decisions or implementing new
regulations on e-scooter services, their impact on pedestrian
safety needs to be thoroughly studied in an empirical and data-
driven manner.

Till date, there have been only a few research efforts that
have attempted to empirically study the safety impacts of
micromobility services in an urban environment [16], [12].
However, these efforts have primarily focused only on the
problem of rider safety, either partially or wholly, leaving out
the aspect of pedestrian safety impacted by these services. In
this work, we conduct a field study to empirically investigate
and characterize new safety issues that have arisen due to
the introduction of e-scooter services, from the pedestrians’
perspective. The most significant impediment in conducting
such a field study is enabling pedestrians to collect and
document information related to e-scooter movements and en-
counters, and its impact on their safety. An approach of asking
pedestrians to document each and every encounter manually
will be too cumbersome, error-prone, and exposed to bias. To
overcome this challenge, we take advantage of the technical
design of rental e-scooters, specifically, the onboard hardware
and communication interfaces. Current service-provider owned
e-scooters come equipped with a constantly beaconing Blue-
tooth Low Energy (BLE) radio, typically employed for near-
field operations such as vehicle unlocking and communication
with customers’ mobile application. Our main idea is to pas-
sively capture the BLE signals/beacons continuously emitted
by the BLE radios on-board these commercial e-scooters by
employing pedestrian participants who are carrying some form
of a BLE receiver (i.e., a smartphone or smartwatch). BLE and
other sensor data crowd-sensed in such a fashion can then
be used to extract fine-grained contextual (spatio-temporal)
information about the mobility state(s) of the e-scooters and
physiological states of the (participating) pedestrians. Using
this information, and the resulting analysis, we will be able
to better understand the various factors impacting pedestrian
safety in such micromobility services.

Specifically, we conduct a field study by recruiting partici-
pants (mostly students) in the main and downtown campuses
of the University of Texas at San Antonio, where e-scooter

services are extremely popular. University campuses have a
high density of pedestrians (who are also often distracted [17]),
making it an ideal environment for a field study such as this.
We observed that it is not only possible to uniquely identify
BLE beacons transmitted by e-scooters operated by popular
service providers (e.g., Lime and Bird) on the above two cam-
puses, but it is also possible to characterize encounters between
these vehicles and pedestrians who are passively capturing
these BLE beacons using their smartphones or smartwatches.
Our field study focuses on crowd-sensing real-time e-scooter-
pedestrian encounters and other pedestrian physiological data
(such as heart rate) on the two campuses over three months
by recruiting pedestrian participants and equipping them with
customized BLE receivers such as smartwatches.

Well-defined spatio-temporal metrics are then computed
from this crowd-sensed data and employed as safety bench-
marks to further understand the impact that the e-scooter
services operating on these campuses have on pedestrian
safety. Our analysis uncovers interesting encounter statistics
and mobility trends, which could be used to identify poten-
tially unsafe spatio-temporal zones Although not generalizable
to all possible urban environments and scenarios, our study
makes a preliminary effort to analyze the impact of new and
upcoming micromobility transportation services on pedestrian
safety and provides a blueprint on how relevant data crowd-
sensed by pedestrians can be employed to conduct similar
studies in other urban environments and communities.

II. BACKGROUND AND RELATED WORK

Before describing the research goals of this paper, we first
present a brief background on e-scooter vehicles and services,
followed by an outline of the related literature.

A. Micromobility and E-scooters

Several different types and form-factors of urban micromo-
bility vehicles are being offered, primarily on a rent-by-the-
minute rental model, by a range of service providers. Powered
micromobility vehicle types include electric bicycles, boards,
skates, and both seated and standing scooters [6]. Depending
on the vehicle form-factor and target market, service providers
may offer their vehicles in either a docked or a dockless
model. In the docked model, vehicles may only be picked
up and dropped off at specific locations, commonly known as
docking stations. The dockless model offers more flexibility
to riders as they can pick up and drop off the vehicles at any
location within the geo-fenced area of operation. This model
is relatively standard in small form-factor vehicles such as
battery-powered e-scooters.

There are several reasons for focusing on dockless e-
scooters in this study. First, e-scooters are currently the fastest
growing form factor throughout the micromobility industry
[7]. E-scooters services started in the United States in 2017,
and quickly expanded to 110 cities by 2019 [18]. Second, any
middle or large-sized city in the US is presently served by a
large number of local and national e-scooter service providers,
offering ubiquitously available vehicles and a range of differ-
ent service options. Lastly, e-scooters are not only accessible
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for short-distance/last-mile trips within the city, but also for
commuting within larger self-administered communities inside
cities such as universities, schools, and company campuses and
shopping malls. See Table I for the range of service providers
and e-scooter types (and their features) found on our university
campuses.

Although e-scooters are available for a personal purchase,
it is the servitization of these vehicles that have resulted in
their popularity. Servitization allows riders to use the nearest
available vehicle, which should be easy to find in an urban
setting due to a large density of vehicles, without having to
securely store or carry them along when not in use. Vehicle
rental (pick-up and drop-off), vehicle geo-location, service
tracking, and payments are facilitated through mobile apps
implemented by the service provider. In addition to the on-
demand nature of these services, the offered vehicles are
environmentally friendly when micromobility trips replace
personal automobile use [22].

Renting and operating these vehicles is fairly straightfor-
ward. Through the service provider’s smartphone application,
riders can activate any available e-scooter belonging to the
provider that they find nearby and pay to ride it for as long
as needed, or until the battery is drained. Riders can travel up
to 28 miles per charge on certain e-scooter models, but most
e-scooter trips are typically much shorter [10]. These vehicles
fit the SAE “low-speed” category, with top speeds less than
20 mph [6]. Riders typically pay anywhere between 15 to
50 cents per minute to use the e-scooters, but some service
providers also charge a base fee (currently $1.00 for Bird and
Lime) to activate an e-scooter. The overall cost is significantly
lower compared to minimum fares of popular automobile ride-
hailing services such as Uber and Lyft (approximately $8.00 in
the United States, with slight variation between cities). Riders
are also expected to educate themselves and comply with the
local laws and regulations, e.g., wearing a helmet and riding
only in bike lanes, while riding these vehicles.

B. Pedestrian Safety in the Built Environment

Any vehicle sharing space with pedestrians poses a risk
of collision, but the threat can vary due to urban density,
pedestrian infrastructure, roadway design, traffic volume and
speed, visibility, and the type of pedestrian [23]. Philip Stoker
et al.’s systematic review of over 170 pedestrian safety studies
showed the three primary factors that may mitigate risk
are also largely controllable through planning and design:
pedestrian-traffic interaction, visibility, and traffic speed [23].
A comprehensive review of street design factors showed streets
with sidewalks on both sides, slower traffic speeds, buffers
and barriers, landscaping, and trees all supported reduced
pedestrian risk, in addition to 20 other factors [24]. However,
the ways that these variables impact safety are uneven across
communities.

Low-income and minority communities experience greater
risk while walking, as compared with higher-income and
White populations. Observations of drivers at crosswalks show
that they yield to Black pedestrians at half the rate, with wait
times 32% higher than White pedestrians [25]. Research on

disparities in pedestrian risk shows evidence for prioritizing
safety improvements in areas with high rates of minorities
and poverty, particularly near schools [26].

University campuses and surrounding areas pose a risk
for pedestrians, including small vehicles on pathways, and
with motor vehicles on campus fringes. Pedestrians perceive
risk from bicycling in campus settings, showing importance
in the travel experience, even when the issue is more of
comfort than safety [27]. Police statistics under-represent the
number of pedestrian and bicycle crashes, supporting a role for
crowdsourcing incident data [28]. We find no research till date
detailing differences in pedestrians’ perceptions of e-scooters
versus traditional bicycle modes.

C. Prior Work on Safety Issues due to Micromobility Vehicles

Prior research efforts to identify and/or address issues
related to micromobility, especially regarding the safety of
pedestrians and riders, did not have a holistic view of the
underlying pedestrian and rider movement patterns. Analysis
by micromobility service providers [29], who can easily gather
contextual data related to their vehicles (such as riding patterns
and parking habits), did not have any quantitative information
on fellow pedestrians and their movement patterns. Moreover,
service providers would have a business incentive to not
highlight the negative impacts on pedestrian safety due to
their vehicles. Similarly, studies by some city governments and
community administrators [16], [30] only employed subjective
feedback and qualitative data (often, more from pedestrians
than riders).

Independent research efforts on micromobility related issues
have thus far been very limited in scope. Initial studies took a
broad approach to apply planning lessons from similar modes,
and identify research needs [31], [32]. An observational study
in west Los Angeles identified safety risks related to e-
scooter driver behaviors, such as the ability to move between
sidewalks and motor vehicle lanes, which may surprise mo-
torists [33]. In Singapore, researchers measured improvements
in rider predictability after installation of directional arrows
on paths, suggesting opportunities to improve safety through
engineering for emerging modes [34]. An early field study
in China observed e-scooter riders to more often ride against
the flow of traffic and in motorized lanes [35]. Researchers
from medical institutions have analyzed micromobility related
injuries of both riders and pedestrians [36], [37], [38], [39],
and found that musculoskeletal fractures and head injuries
were most common. While riders may be compelled to wear
proper protective gear based on these findings (for example,
mandatory use of helmets as suggested by Choron and Sakran
[40]), the same cannot be enforced on fellow pedestrians.
Sikka et al. highlighted the health and financial impact for
pedestrians involved in an e-scooter collision, using a case
study [12].

New approaches connect safety research to mobility needs,
leveraging observational data. McKenzie analyzed usage pat-
terns of e-scooter and e-bikes in Washington, DC, using the
city’s publicly accessible API to micromobility data portals
[9]. James et al. analyzed e-scooter safety perceptions and
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TABLE I: E-scooter service providers (in and around our university campus) and their vehicle features.

Service Providers
Bird [19] Lime [20] Blue Duck [21]

Xiaomi M365 Segway Ninebot ES2
(with extended battery)

Electisan F350 Custom-made Ninebot
Segway Ninebot ES2
(with extended battery)

Xiaomi M365

Fe
at

ur
es

Headlights X X X X X X

Tail/Brake Lights X X X X X X

Bell/Horn X X X X X X

Display X X X

Range (mi) 18.6 15.5 (28.0) 20-30 12-25 15.5 (28.0) 18.6

Top Speed (mph) 15.5 15.5 (18.6) 18.0 15.5 15.5 (18.6) 15.5

sidewalk blocking frequencies from survey data, and observed
parking practices in different built environments [41]. The
use of virtual reality enables controlled experimentation of
different e-scooter safety contexts without risk of field in-
terventions [42]. Initial empirical results support additional
policy-focused work to integrate micromobility as part of a
sustainable transportation system [43]. Micromobility research
increasingly leverages new data collection methods to address
a wide range of needs. Yet, none to date evaluate a system for
pedestrian-focused e-scooter interaction.

In this work, we systematically analyze e-scooter and
pedestrian encounters (a precondition to accidents involving
e-scooters and pedestrians), and discern if or how pedestrians
and such micromobility services can safely co-exist in urban
environments.

III. RESEARCH OBJECTIVES

Disruptions to pedestrian movement due to micromobility
vehicles such as e-scooters, and collisions between these
vehicles and pedestrians, occur only when they closely (in
some spatio-temporal sense) encounter each other on the
streets. A more precise and empirically derived definition
of an encounter is detailed later in Section IV-D. Given
the significant number of incidents involving pedestrians and
micromobility vehicles reported in the last two years [12],
we can postulate that every such close encounter between
micromobility vehicles (moving or stationary) and pedestrians
has some probability of resulting in a collision or a disrup-
tion to pedestrian movement. In other words, a higher den-
sity/concentration or frequency (or both) of such close vehicle-
pedestrian encounters is indicative of a higher probability or
potential for vehicle-pedestrian collisions and is generally a
good metric for benchmarking the state of pedestrians’ safety.

There are two critical factors that dictate the occurrence
of close vehicle-pedestrian encounters, and their density and
frequency. The first, also referred to as space factors, are
the spatial constraints imposed by the infrastructure (roads,
sidewalks, etc.) shared by the micromobility vehicles and
pedestrians. The second, also referred to as time factors,
are the temporal constraints that dictate the mobility (speed,
direction, etc.) of the micromobility vehicles and pedestrians
within a given shared space. A combination or co-existence
of these space and time factors also impact the occurrence of
encounters. In order to further clarify this, let us give some
concrete examples of these factors as observed by us during
our study.

(a) Improperly parked e-scooter. (b) A street light pole.

Fig. 1: Scenarios with pedestrian path roadblocks.

For instance, insufficient allocation of space for sidewalks
and bike lanes can lead to unsafe encounters between e-
scooters and pedestrians. If a bike lane is not present, e-
scooter riders may feel compelled to use sidewalks meant
for pedestrians. Similarly, if an improperly parked e-scooter
is blocking a sidewalk, pedestrians may be forced to use the
main road to bypass the blockade (as shown in Figure 1a)
which places them in great danger of getting hit by cars on the
road. Other permanent obstructions, for example, trees, poles
(as shown in Figure 1b), benches and fire hydrants, on spaces
often shared between e-scooter riders and pedestrians can also
lead to unsafe encounters. Safe utilization of space allocated
to riders and pedestrians also depends on proper planning of
transportation hubs. For instance, if all commuters who just got
off a bus head in the same direction to their final destination, it
may cause congestion among riders and pedestrians covering
their last-mile. An optimally positioned bus stop, train station
or parking lot should observe the diffusion of commuters
in all directions, thus minimizing chances of congestion and
making safer utilization of the space allocated for riders and
pedestrians.

Similarly, several time factors also play an important role in
generating potentially unsafe micromobility vehicle-pedestrian
encounters within a given space. For instance, if there is a
spike in rider and pedestrian traffic due to multiple closely
timed events (e.g., multiple classes scheduled in the same
building and starting at the same time), it may cause con-
gestion among riders and pedestrians en-route to these events.
Another crucial time factor is the reaction time pedestrians get
to navigate around micromobility riders traveling at different
speeds and in different directions. Depending on whether a
micromobility vehicle is moving towards or away from a
pedestrian, and whether the vehicle is behind or in front of
the pedestrian, the pedestrian may or may not get sufficient
time to react appropriately.
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Our research agenda, thus, is to first analyze by means of
empirically collected encounter data how certain space and
time factors affect the safety state of pedestrians when they are
in co-existence with e-scooters (and riders). Specifically, we
seek to conduct the following three broad research analyses:

RA1 Correlating space factors with empirical encounter
and physiological data to identify potentially unsafe
(to pedestrians) encounters and contexts.

Specifically, in RA1, we analyze the spatial distribution of
encounters, changes in encounter properties between high and
low encounter concentration or density areas, and the effects of
pedestrians’ and riders’ spatial diffusion on encounter rates and
other encounter-related properties in order to understand their
impact on pedestrian safety. We will also relate this analysis to
infrastructure-related shortcomings, such as missing bike lanes
and sidewalk obstructions, in order to determine potentially
unsafe encounters, if any.

RA2 Correlating time factors with empirical encounter
and physiological data to identify potentially unsafe
(to pedestrians) encounters and contexts.

Specifically, in RA2, we analyze the temporal distribution
of encounters, changes in encounter properties between time
periods comprising of a large number of encounters versus the
smaller number of encounters, and the effects of pedestrians’
and riders’ temporal diffusion on encounter rates and other
encounter-related properties in order to understand their impact
on pedestrian safety. As before, we will relate this analysis
to the infrastructure-related shortcomings, such as unbalanced
class schedules and common event times, in order to determine
potentially unsafe encounters, if any. Additionally, we will also
analyze different encounter scenarios that give varying levels
of reaction time to pedestrians and quantitatively measure
pedestrians’ reactions to these different encounter scenarios.

RA3 Correlating a combination of space & time factors
with empirical encounter and physiological data to
identify potentially unsafe (to pedestrians) encoun-
ters and contexts.

In RA3, we will extend our previous analyses to study
which combinations of space factors (e.g., poor shared space
utilization) and time factors (e.g., event times), as discussed
earlier, are the most significant enablers of unsafe encounters
between pedestrians and riders.

In addition to the above quantitative analyses, which are
primarily based on the crowd-sensed (BLE-based) encounter
data and data from mobile sensors (e.g., heart rate), we
will also analyze pedestrians’ attitude and perception towards
the impact that e-scooters have on pedestrian safety (Sec-
tion VI-B).

IV. RESEARCH METHODOLOGY

We now describe the details of the field study that we con-
ducted for crowd-sensing the e-scooter–pedestrian encounter

and other pedestrian-specific data used for the safety analyses
summarized earlier. As part of this description, we outline in
detail the study environment, data collection process, including
participant recruitment and the type and granularity of the data
that is collected.

A. Significance of Pedestrian’s Point of View

Let us first briefly describe why pedestrians are best suited
for gathering (and crowd-sensing) detailed information on their
encounters with e-scooters. The e-scooters may or may not
have a rider at the time of an encounter (for example, a parked
vehicle), which means we will fail to gather information
on encounters between pedestrians and rider-less vehicles if
we depend only on riders for data collection. The vehicles
themselves feature several sensing options, but, (i) none of the
on-board sensors are suitable for detecting nearby pedestrians,
and (ii) service providers are not comfortable with releasing
their vehicles’ data due to potential misuse by competitors and
customer/rider privacy concerns.

Pedestrians also carry a variety of sensors with them that
are present on their mobile and/or wearable devices. While
experimenting with different sensors that could be employed
for detecting encounters, we determined that most e-scooters
transmit BLE advertising packets at regular intervals, which
could be passively captured by the BLE receivers present on
most smartphones or wearables carried by the pedestrians.
These BLE packets also contain identifiers that can be used to
distinguish them from other BLE devices. For example, they
may contain the service provider’s name (as shown in Figure 2)
or other unique naming conventions. Furthermore, due to the
short range of BLE transmissions, pedestrians may capture
the BLE packets only when they encounter a nearby e-scooter,
which can minimize unwanted noise that could occur due to e-
scooters that are not close to the pedestrian which also reduces
the task load (Section IV-B) for our participants. Further,
it also obviates participants having to carry any specialized
sensing hardware, and it is reasonable to assume that most
pedestrians are comfortable and used to carrying a smartphone
or wearable such as a smartwatch.

B. Data Collection

In order to accomplish the research goals outlined in
Section III, we crowd-sensed real-life e-scooter–pedestrian
encounter data by capturing BLE packets emanating from e-
scooters in two separate urban communities supplemented by

Fig. 2: A BLE advertising packet from a Lime e-scooter.
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physiological and contextual (location and time) information
and real-time feedback from the participating pedestrians.
The Field: To have a controlled understanding of encounters,
we limited the field of our study to the main and downtown
campuses of the University of Texas at San Antonio and
neighboring points-of-interest including off-campus student
housing and transportation hubs. Both campuses are within the
city perimeters and cover about 725 acres in total area. As an
urban university with more than 35,000 students and more than
4,000 employees, our campuses observe significant foot traffic
when classes are in session. Since their introduction in late
2018, e-scooters have gained significant popularity throughout
the city, including our university campuses. Students and
employees primarily use micromobility services as a last-
mile solution on campus, e.g., to travel between parking lots,
bus stops or student housings, and university buildings where
classes are scheduled.
Participants: We recruited participants on a first-come-first-
served basis through advertisements and fliers distributed
around the university campuses, limited to our inventory of
smartwatches. Out of 105 participants who participated for at
least 15 days (on average) for the 30-day study, 77 participants
completed all their assigned tasks (and thus only their data
was used in our analysis in Section V), while the remain-
ing participants did not complete their tasks due to varying
reasons, such as loss of interest, damaged sensing hardware,
or other technical difficulties. Among the participants who
completed their tasks, 41 were female, and 36 were males.
Their age ranged between 18 and 54 years, and all of them
were either students or employees at the university. 61 of the
77 participants primarily attended classes or worked on the
main campus, while 16 attended the downtown campus for
one or more classes or work. We renumerated the participants
with $25 for their participation in our data collection pro-
gram. Our participant recruitment, data collection, and result
dissemination procedures were reviewed and approved by the
university’s Institutional Review Board (IRB).
Sensing Hardware and Application: In order to capture
BLE packets broadcast by the e-scooters and at the same
time collect additional physiological and contextual informa-
tion related to each encounter, we loaned a smartwatch to
each participant for the duration of their participation. The
loaned watch came installed with a custom sensing and data
collection application written by us, and was paired with
the participant’s smartphone only for Internet connectivity (in
order to upload the sensed data to our data servers). Only our
loaned smartwatch hardware and the installed data collection
application was used to sense and collect data. This was
done to maintain data consistency (across participants), ease
of application development (only one mobile OS and hardware
were needed), to avoid liability due to damaging participants’
device, and for improving accessibility of carrying out some
of the manual tasks (described below) during each encounter.
We chose the state-of-the-art Mobvoi TicWatch E smartwatch
as our data collection because of its built-in GPS and heart
rate sensors, modern BLE v4.1 radio, and IP67 rated water
resistance. The TicWatch E also features a 1.4 inch round
OLED display and runs Wear OS based on Android 8.0.

(a) (b) (c)

Fig. 3: Encounter questions.

Participant Tasks: Each participant was required to wear the
loaned smartwatch, especially when present on any one of the
university campuses, for a total of at least 30 days. We initiated
the data collection program in April 2019 and terminated
it by the end of June 2019 (a total of 3 months). On the
first day of participation, participants signed the IRB-approved
consent form, completed a demographic survey, checked out
the smartwatch with the installed data collection application,
received assistance in pairing the loaned smartwatch with their
phones and received a brief orientation on the operation of
the installed application and their expected tasks. Whenever
our data collection application (running in the background)
determines1 that the participant is a pedestrian and if any
e-scooter is detected in their vicinity (i.e., by sensing the
BLE packets originating from the e-scooters) at that time,
it prompts the participant to answer up to three Yes/No
questions (Figure 3) related to the encounter. The goal of these
questions is to collect some real-time ground truth related
to the detected encounter. If the participant answered NO
to the first question (“Is there a fast moving e-scooter in
your vicinity?”), the remaining two questions related to the
e-scooter mobility were not asked. If participants failed to
answer the questions within a short period (say, within a
minute) after the e-scooter detection, the interface displaying
the question was no longer available to prevent false data entry.
In order to prevent annoyance to participants, and to preserve
participant engagement throughout the data collection period,
the application asked questions only once every 15 minutes,
even if the participants encountered more than one e-scooter
during that period. Also, during the first-day orientation,
participants were instructed that they can be as engaged in
providing real-time feedback as they want, removing any
pressure or coercion for providing feedback. On their last day
of participation, participants returned the loaned smartwatch
(and any other accessory), completed a post-study pedestrian
safety survey, and got remunerated. Details of the post-study
survey instrument and its outcomes are presented later in
Section VI-B.

C. Data Modalities

We collected real-time quantitative data related to the en-
counters between e-scooters and our participants employing
the data collection procedure and application described above.
Table II summarizes all the information or data related to

1Accomplished using Android’s DetectedActivity API.
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these encounters that were either directly sensed or indirectly
inferred. Due to moderate weather conditions throughout the
study period, with an average temperature of 74.72◦F (σ =
4.87◦F ) and average precipitation of just 0.137 in. per month
(σ = 0.03 in.) [44], we deem that our dataset will not be very
useful for understanding the impact of weather on e-scooter
and pedestrian safety.

TABLE II: List of all information from/about the encounters.

Quantitative External
Location Pedestrian and Rider Attractors
Time • Location
Heart Rate • Time
Bluetooth Pedestrian and Rider Generators
• Signal Strength • Location
• Service Provider • Time

On-Spot Questions
• Stationary or Moving
• In Front or Behind
• Direction w.r.t. Pedestrian

Quantitative Data: Our data collection application logged
participants’ every encounter with e-scooters in their vicinity.
Specifically, it recorded the signal strength information from
the BLE packets received from the e-scooter(s), time, location
(GPS coordinates), heart rate, and participants’ responses to
the three questions (Figure 3) if available. By conducting a
comprehensive heuristic analysis of the BLE advertisement
packets before the start of the study, we determined a technique
for identifying the service provider corresponding to each re-
ceived BLE packet. Using this information, our data collection
application also recorded the service provider corresponding
to each encountered e-scooter.
External Data: We also collect certain supplementary infor-
mation that can help us understand and/or support our findings
from the quantitative data. Specifically, we gathered location
and time information on pedestrian and rider attractors and
generators. We refer to locations where a significant number
of pedestrians and riders are headed, such as a class starting
at a particular time, as attractors. Similarly, generators are
locations where a significant number of pedestrians and riders
are generated, such as a bus stop or parking lot. Attractors and
generators often play dual roles, for example, when a class
ends and another starts just afterward. We collectively refer to
such attractors and generators as points of interest (or POI).

D. Encounters and Data Sources

An encounter, as relevant to our analyses, occurs when an
e-scooter and a pedestrian meet each other at close proximity.
Detecting such encounters from our crowd-sensed data is
important, and a prerequisite, before analyzing their spatio-
temporal characteristics for safeness. Thus, we first define the
notion of an encounter based on available data (BLE and user
feedback) as follows:
• Predicted Encounters (EP ): Derived from BLE data and

tagged by the algorithm in Section IV-D1 after the study.
• Observed Encounters (EO): Derived from feedback data

and tagged by the participant in real-time during the study.
While EP is more deterministic, EO has information about

the direction and location of the e-scooter with respect to the

Strong/Consistent BLE SignalWeak/Inconsistent BLE 
Signal

No BLE Signal

Time →

Time →

Time →Inconsistent BLE 
Packet Reception 

Intervals

Consistent BLE 
Packet Reception 

Intervals

No BLE Packet 
Reception

E-Scooter Broadcasting 
BLE Packets

Participant with BLE 
Sensing Application

Participants with BLE Sensing Application

Fig. 4: BLE signal coverage around an e-scooter and how
pedestrians at different distances from the e-scooter observe
different reception intervals between BLE advertisements.

pedestrian and thus can provide safety insights on moving e-
scooters based on user feedback (Table II). We provide details
of both encounters in Sections IV-D1 and IV-D2, respectively.
1) EP : Data packets broadcast by BLE radios on-board e-
scooters is a reliable means to determine proximity between
participants and e-scooters, however not all close-enough
encounters may be relevant to our analysis. For example, our
participant could have captured one or two BLE packets from
inside their home when an e-scooter rode past their house,
which should not be considered as a real encounter. Prior to
our field study, we empirically determined that as a pedestrian
moves away from an e-scooter (i.e., the distance between them
increases), reception intervals of the BLE packets transmitted
by the e-scooter becomes inconsistent at his/her smartwatch
(as shown in Figure 4). For instance, we start observing
inconsistent BLE reception intervals, starting at a distance of
20-25 ft or more. This observation was consistently observed
across most models of the e-scooters and providers targeted by
us in this work. We use this observation to classify a sequence
of captured BLE packets as an encounter and then outlined an
efficient technique to detect such encounters within the BLE
packet stream in our dataset.

We use a sliding window approach to identify the encounters
in a stream of fragmented BLE packets captured throughout
the day by each participant. A window size of 1 second
with an 80% overlap (i.e., each window has an overlap of
80% with its previous window) is used, and the windows
that contain 4 or more BLE packets are marked as potential
encounter windows. Both the window length and threshold
of 4 were empirically determined, based on the approximate
minimum encounter duration and approximate maximum BLE
advertisement interval, respectively. The potential encounter
windows are then further refined as follows: If the time interval

t < 300 seconds
BLE Packet 
Receptions

Encounter

1 Second Sliding Window

Not an 
Encounter

N >= 4

Encounter EncounterNot an 
Encounter

N >= 4

t > 300 seconds

N >= 4N >= 4

Fig. 5: Encounter detection algorithm on different BLE recep-
tion cases.
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Same Direction
Same Direction: Front of Pedestrian
Same Direction: Behind Pedestrian
Opposite Direction
Opposite Direction: Front of Pedestrian
Opposite Direction: Behind Pedestrian
Elevated Heart-Rate

Fig. 6: Summary of observed (EO) encounters for e-scooter
moving direction and pedestrian line-of-sight combinations.

of BLE packets between two (or more) potential encounter
windows is less than 300 seconds, the two windows are
combined to form a single encounter. If the time interval is
greater than 300 seconds, the two windows are considered as
two separate encounters. Finally, if more than 4 encounters
are detected for a specific e-scooter in one day by a single
participant, the later encounters are discarded on the basis that
the participant was spending abnormally long durations of time
in close proximity of the same e-scooter (e.g., sitting at an
outdoor restaurant where a scooter was parked nearby). This
filtering step ensures that a single e-scooter or participant does
not heavily bias our encounter data and the related analysis.
Figure 5 summarizes this encounter detection technique with
different BLE packet reception examples. Using the above en-
counter detection technique, we classified e-scooter–pedestrian
encounters with 1058 of the 7919 uniquely observed e-
scooters in our dataset (determined using unique identifiers
in the captured BLE packets). Overall, we observed a total of
1800 predicted encounters, including repeat encounters with
previously encountered e-scooters.
2) EO: Observed encounters are voluntarily tagged by the
participant in real-time whenever the data collection ap-
plication detects an e-scooter in proximity. In contrast to
passively collecting the BLE data, which does not require
active involvement of the participant, reliable feedback data
is challenging to collect because it not only requires reliance
on the participants to actively provide feedback, but such data
is also subjective. This aspect was identified in our dataset,
which contains 6482 feedbacks (among 10000+ detections)
on e-scooters over the entire study period. In both encounter
types (EP and EO), Blue Duck’s e-scooters constituted only
2% of all detected e-scooters and were not observed in the
feedback data. Therefore, we will use only encounters from
Bird and Lime brand of e-scooters for our analysis. Moreover,
we will only consider encounters that occur between 06:00-
23:00 (4993 feedbacks), because the earliest class (on either
campus) started at 07:00 and the last class finished at 21:45.
Therefore, the time period between 06:00-23:00 represents the
most typical use of e-scooters as a last-mile transportation
solution. Approximately 20% of the recorded observations in
that period correspond to moving e-scooters, with at least
100 potentially hazardous observations where the e-scooter
approached the participants from behind. A breakdown of
the observed (EO) encounters to show the different e-scooter
moving direction and pedestrian line-of-sight combinations
appears in Figure 6.

An increase in heart rate can occur when a pedestrian is
startled by a fast-moving e-scooter, which in many scenarios
implies that the pedestrian was faced with inadequate response
time. We study this parameter to validate if our participants
were startled by the observed e-scooter encounter or not. For
the analysis, we use the heart rate data that was collected
from each participant whenever a feedback questionnaire
was triggered. The normal or resting heart rate can vary
significantly from participant to participant, which hinders
the feasibility of using a global threshold for all participants.
Thus, we determine personalized threshold ranges for each
participant based on their overall heart rate data, and their
most frequently occurring pulse rate(s). We use this threshold
to check if an encounter-related (moving) heart rate was within
the participant’s computed threshold (for most daily activities)
or not. In almost 60% of the moving encounters seen in
Figure 6, participants (as pedestrians) have an elevated heart
rate with e-scooters approaching them within one foot away at
some time instant from the front and the behind. This finding
aligns with our intuition that pedestrians may have little time
to respond to rapidly moving e-scooters and can be easily
startled by them. Moreover, most e-scooters emit minimal
audible sound during their regular operation and combined
with their faster speed they could present a significant safety
risk to the pedestrians if they cannot observe them and take
appropriate reactions in a timely fashion.

V. EMPIRICAL FINDINGS

In this section, we comprehensively analyze the data col-
lected during our field study by employing the criteria outlined
in Section III.

A. Outcomes of RA1

To analyze how the encounters are spatially distributed
throughout our university campuses and their surroundings,
we first build a set of atomic segments where encounters may
occur. Each atomic segment is an edge in the graph of roads
and walkways, and one can enter or exit an atomic segment
only at its end. Atomic road segments may connect with other
atomic segments (such as at an intersection), or end at a
POI. An encounter map in Figure 7 shows the number of
predicted (EP ) and observed (EO) encounters that occurred in
each of the campus areas, during the entire study period. The
highest encounter counts in the main campus atomic segments
are EP = 611 and EO = 35, whereas in the downtown
campus are EP = 256 and EO = 55. Out of the 21447
atomic segments (combined for both the main and downtown
campuses) from Figure 8a, at least twenty atomic segments in
both campuses have a relatively high number of encounters:
EP > 25 and EO > 5, with more than 95% of atomic
segments having five or fewer EP and EO. These results
highlight the extremely disproportionate number of encounters
on both campuses, implying that pedestrians in certain parts of
the campuses (and their surroundings) are significantly more
likely to encounter e-scooters than the rest of the campuses.

From Figure 7, we notice a high saturation of e-scooter
encounters around student residential areas on both on- and
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Fig. 7: Predicted (EP ) and observed (EO) encounter density in and around main campus, and downtown campus.

off-campus locations. This saturation occurs as students dis-
perse from the residential areas to different academic buildings
of the university where classes are being held. As part of
their commute, they may walk for a short distance from these
residential areas until they reach a shuttle stop or a parked e-
scooter or their final destination. Such daily commutes result
in heavy pedestrian traffic near the residential areas, which are
often targeted by service providers for deploying their fleet.
These factors explain the presence of high encounters (EP and
EO) counts in these areas. We also notice similar saturation at
other POIs near shuttle stops and outside staircases at the end
of a long walking path. Riders, commuting to buildings inside
the university, park the e-scooters near the stairs or outside

doorways, as carrying their e-scooters through to the staircase
is inconvenient. This scenario can explain the high number of
e-scooter encounters (EP and EO) near these places.

We next focus on the spatial closeness of the predicted
encounters because closer encounters have a higher likelihood
of resulting in a pedestrian-related collision or disruption.
Due to its attenuation over distance, BLE signal strength is
a good indicator of the spatial closeness of encounters that
occurred between our participants and e-scooters operating
in our test deployment area. Because of the different BLE
transmission power used by different service providers, we
conduct this analysis separately for Bird and Lime. The
signal strength of BLE packets captured (on the TicWatch E
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(a) Space: Atomic road segments.
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(b) Time: 15-minute periods.

0 5 10 15 20 25 30 35
Number of Encounters

0

3

6

9

12

15

18

>20

Nu
m

be
r o

f S
pa

tio
-T

em
po

ra
l Z

on
es

Frequency Distribution of Encounters by Type
Type
Predicted
Observed

(c) Space-Time: All combinations.

Fig. 8: Frequency distribution of predicted (EP ) and observed (EO) encounters between 06:00-23:00 among (a) 21447 atomic
segments in main and downtown campuses combined, (b) 68 15-minute periods in a day, and (c) all combinations of 21447
atomic segments and 68 15-minute periods.
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Fig. 9: Maximum BLE signal strength during each predicted
encounter EP . Comparison between atomic segments with
low encounter counts (1-84), 15-minute periods and their
spatio-temporal combinations vs. atomic segments with high
encounter counts (85-169), 15-minute periods and their spatio-
temporal combinations, respectively. Star sign denotes the
mean BLE signal strength.

smartwatch) from Bird brand e-scooters within one feet away
from their computer module (usually mounted on the stem of
the e-scooter) is approximately -60.5 dB, whereas for packets
captured from Lime brand e-scooters in the same setting has an
approximate signal strength of -46.25 dB. Using this baseline
observation, we found that 0.43% of encounters (EP ) were
less than one foot away from the participant.

As seen in Figure 9, we discovered that predicted encounters
in atomic segments with high encounter counts are on aver-
age closer (as the average BLE signal strength is relatively
stronger) than predicted encounters in atomic segments with
low encounter counts (as the average BLE signal strength
is relatively weaker). This analysis tells us that encounters
in high-encounter atomic segments are at a relatively closer
range (distance between the participants and e-scooters) than
encounters in low-encounter atomic segments, which indirectly
suggests that collisions are more likely to occur in high-
encounter atomic segments than in low-encounter atomic
segments.

We also observed that the vast majority of proximate
encounters between e-scooter riders and pedestrians happened
on narrow pedestrian paths such as sidewalks (Table III).
However, there are very few bike lanes and shared-use paths
(typically at least 10 feet wide) in the study areas. This
deficit creates conflicts and safety challenges for both pedes-
trians who prefer to walk to nearby buildings, and to riders

TABLE III: Space: Encounters by functional classification.

TESa MEMb PEMc

Functional Classd EP EO EP EO EP EO

Arterial Streets 998 709 146.1 60.7 6.9 2.3

Collector Streets 269 336 68.4 55.2 3.2 2.1

Local Streets 1285 2255 176.0 171.8 8.3 6.6

Shared-use Paths 102 119 306.0 432.6 14.5 16.6

Sidewalks 994 1163 617.8 470.7 29.2 18.1

Other/Unclassified 154 411 799.1 1410.0 37.8 54.2

Total 3802 4993 352.2 433.5 100.0 100.0
a Total Encounters per Segment (TES) is the sum of all detected proximal

pedestrian-scooter encounters in a network segment.
b Mean Encounters per Mile (MEM ) is the average number of encounters

per segment divided by the length of the segment in miles.
c Percent Encounters per Mile (PEM ) refers to the percentage of TES

w.r.t sum total of all encounters over all segments.
d Arterial streets include OpenStreetMap (OSM) API tags ”primary” and

”secondary”. Collector streets include OSM tags ”tertiary”. Local streets
include OSM tags ”residential” and ”service”. Shared-use paths include
OSM tags ”path” and ”cycleway”. Sidewalks include OSM tags ”footway”
and ”pedestrian”. Other/unclassified uses all other OSM tags.

who may be passing along to reach adjacent parking lots
or other destinations. Providing infrastructure with separated
routes for e-scooters, such as shared-use paths and bike lanes,
may help protect pedestrians from conflicts in constrained
space on sidewalks. Alternatively, educating all road users
on usage guidelines (such as right-of-way and safety rules)
via signboards and posters, especially on roadways with high
pedestrian and e-scooter density, can prevent future mishaps
related to e-scooters. Additionally, Figure 7 shows several
high-encounter roadways in relatively isolated locations. Plan-
ners and engineers can review these spots for targeted projects
to reduce conflicts.
Generalized Implications. These findings suggest opportuni-
ties to improve safety both in and outside a campus setting.
Service provider data can easily identify e-scooter density and
rider routes around a specific area at a given time. In contrast,
our data allowed identifying pedestrian-scooter encounters
and their density in specific areas, for instance, parking lots,
recreation centers, etc. With this knowledge, planners can
identify these hotspot areas and remediate areas that lack
adequate critical infrastructure through rules of co-existence
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0

50

100
Predicted Encounters

Encounters

Monday Tuesday Wednesday Thursday Friday Saturday
1-Hour Time Periods

0

50

100
Observed Encounters 0

100

200

0

100

200
Classes

Nu
m

be
r o

f E
nc

ou
nt

er
s Num

ber of Classes

Fig. 11: Number of predicted (EP ) and observed (EO) encounters in each of the 102 1-hour periods (sorted chronologically),
between 06:00-23:00 for six days of a week, plotted along with the number of classes scheduled in the corresponding time
periods. No regular classes were scheduled on Sundays.

(redirecting flow, rearranging) or additional structures (lanes,
docking stations). For instance, a safe walking space could
be reclaimed in high-encounter areas by adding a bike lane
alongside paths for micromobility and bicycle riding, or along
nearby parallel routes [45], [46]. Furthermore, the above
results can help optimize transit in a way that will reduce the
average distance traveled by last-mile commuters, and thus
reduce the number of encounter.

B. Outcomes of RA2
To analyze how the encounters are temporally distributed

throughout the week, we partitioned the week into 476 15-
minute periods starting at 06:00 and ending at 23:00 each day.
Although there were significantly fewer classes and events
on campus during the weekends, we included them in our
analysis for completeness. Figure 10 shows the number of
encounters that occurred in each of the 476 time periods across
both the campuses, during the entire study period. During two
time periods, Wednesdays 12:45-13:00 and Thursdays 22:30-
22:45, we observe the highest number of predicted encounters
(EP > 50). At the same time, for twenty time periods on
Wednesdays and Thursdays, we also see a relatively higher
number of observed encounters (EO > 35). Also, we see
several spikes and surges throughout Monday to Friday, and
both EP and EO on campus were significantly lower on Sat-
urdays and Sundays. To understand the encounter frequency
throughout the length of a day, we added the encounter counts
observed during the 68 15-minute periods each day (between
06:00-23:00). The results shown in Figure 8b demonstrates
that pedestrians are significantly more likely to encounter e-
scooters at certain times of the day, such as between 12:45-
13:00 and between 14:45-15:00. During these time slots, our
participants had a total of EP = 169 and EO = 28.

Similar to the spatial analysis, we investigate the spatial
closeness of encounters that occurred during periods with low
encounter counts, and with encounters that occurred during
periods with high encounter counts. We split the encounters
equally among two interval groups based on the maximum en-
counter count for each encounter type. As shown in Figure 9,
encounters that occurred during periods with high encounter
counts are generally closer, for both the Bird and Lime brand
e-scooters, as the observed average BLE signal strength is
relatively stronger in these encounters. This finding is in
contrast to encounters that occurred during periods with low
encounter counts, as the observed average BLE signal strength
for encounters is relatively weaker in this case. This distinction
suggests that collisions are more likely to occur during time
periods with high encounter counts than during time periods
with low encounter counts. Similar patterns were observed in
both predicted (EP ) and observed (EO) encounters.

As students and some employees plan their arrival and
departure to/from campus depending on class timings, it is
intuitive that our encounter observations have some relation to
the schedule of classes. We plot the hourly encounters recorded
from April to early-May (when the classes ended at the end
of spring semester) alongside the number of classes scheduled
per week in Figure 11. We observed that the highest number
of classes occur on Tuesdays, Thursdays, and Wednesdays
in the week in Figure 11, and the average encounters these
days are also higher than the rest of the week showing the
occurrence of encounters follows closely with class schedules.
Also, there are more predicted encounters (EP ) at night than
during the day, more likely due to late-night study and exam
preparations by students. While we see significant overlap
in the afternoons, there are comparatively fewer encounters
(predicted and observed) around the early morning periods.



12

0

50

100

150

200

250

6 8 10 12 14 16 18 20 22

N
u

m
b

e
r 

o
f 

E
n

c
o

u
n

te
rs

Hour of the Day

Predicted Encounters

Arterial streets Collector streets Local streets

Shared-use paths Sidewalks Other/Unclassified

0

50

100

150

200

250

300

6 8 10 12 14 16 18 20 22

N
u

m
b

e
r 

o
f 

E
n

c
o

u
n

te
rs

Hour of the Day

Observed Encounters 

Arterial streets Collector streets Local streets

Shared-use paths Sidewalks Other/Unclassified

Fig. 12: Number of predicted (EP ) and observed (EO) encounters in each 1-hour time period between 06:00-23:00, plotted
for each functional classification of road network segments. The x-axis unit represents the next 1-hour time period.

This overlap could be due to a combination of multiple
factors. First, the personnel who recharge the e-scooters (in
return for a payment from the service provider) usually do so
during the night, as specific e-scooter models can take up to
8 hours to fully recharge. These personnel generally collect
drained e-scooters around late evening or night and are also
responsible for distributing the recharged e-scooters around
the city. We observed that the recharged e-scooters are usually
distributed around the late morning periods, which aligns with
our observation of the negligible number of encounters around
the early morning periods. Second, late spring-early summer
mornings in our target field of study usually have a pleasant
climate, which may prompt last-mile commuters to walk to
their final destination instead of using micromobility vehicles.
Generalized Implications. Scooters can be introduced or
removed around the time periods with high encounters to
provide reliable transportation options (to reach destinations
in a timely fashion without hindering other road users).
Regulations can be set accordingly to improve the road user
experience and provide a safer environment (for pedestrians)
through better management of chaotic times. For example,
in a university setting, the shuttle buses can be made more
frequent during the observed high encounter times, which
could encourage students to use shuttles instead of e-scooters.
Similarly, in a crowded city setting, the timing of frequent e-
scooter encounters could be used in combination with other
travel modes to compliment last-mile connections and reduce
conflicts.

C. Outcomes of RA3

To analyze how the observed encounters (EO) are spatio-
temporally distributed, we study all combinations of the
21,447 atomic segments in both campuses and 68 15-minute
periods in one day (between 06:00-23:00), for a total of
1,458,396 spatio-temporal zones in each campus. More than
90% of the spatio-temporal zones in both the main and the
downtown campus did not have any predicted encounters (EP )
or observed encounters (EO), as seen in Figure 8c. This
asymmetry indicates that pedestrians are significantly more
likely to encounter e-scooters in certain parts of the campuses
(and their surroundings) than the rest of the campus areas, and

only at specific times. For instance, there were lesser or no
predicted encounters (EP ) on the Main campus from 06:00-
11:00 on Tuesdays, compared to the latter half of the day.

We also identified that the residential areas outside the
campuses had fewer or no encounters in the early morning,
more likely due to e-scooter recharges schedules, lack of
classes, and availability of bus shuttles. We noticed high
predicted encounters (EP ) inside the campus, mostly between
12:00-14:00. High encounter counts, both predicted (EP ) and
observed (EO), could be explained by the following factors.
Firstly, people usually leave university for lunch around this
time. Also, students who only have morning classes for the
day start leaving the campus, and on the other hand, students
who only have afternoon classes start coming on to campus
around this time. Since there are more classes (150+) from
mid-day to early-evening (12:00-16:00) on most weekdays
except Fridays, depicted in Figure 11, this could also show
how e-scooter usage also increases around that time, with the
highest number of encounters occurring between 14:45-15:00.

Distribution of encounters by functional classification of
their locations in Figure 12 shows observed encounters vary
more on an hourly basis than predicted encounters. Local
street encounters peak mid-day and at 17:00, suggesting an
increased interaction with pedestrians during lunch breaks and
commuting. Many local streets in the study area do not include
sidewalks, which may exacerbate these conflicts. Afternoon
and evening peaks in observed encounters using sidewalks
suggest their important role in class changes and last-mile
connections, yet with limited space to separate pedestrians
and e-scooter riders. The low overall conflicts on shared-use
paths and other/unclassified network links are likely due to
both the improved space for separating modes, and the lower
availability of these network links serving destinations. The
late evening peak in encounters, particularly on local streets,
could be related to high usage of e-scooters for recreational
and social trips.

Similar to the individual spatial and temporal analyses
outlined earlier, we discovered from Figure 9 that predicted
encounters in atomic segments with high encounter counts are
on average closer in range (as the observed average signal
strength of the BLE packets in the encounters is relatively
stronger) than predicted encounters in atomic segments with
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low encounter counts (as the observed average signal strength
of the BLE packets in the encounters is relatively weaker) for
Lime and Bird brand e-scooters. This suggests that e-scooter
related pedestrian collisions are more likely to occur in spatio-
temporal zones with high encounter counts than in the ones
with low encounter counts.
Generalized Implications. The spatio-temporal analysis pro-
vides insights on multiple location-time combinations, and
can support reduction of conflicts, in addition to multi-modal
coordination. Planners and engineers can use encounter data
to identify locations for infrastructure improvements that are
sensitive to local transportation demands throughout the day.
Traffic signal timing and intersection designs may be adjusted
to reduce conflicts with pedestrians, including introduction of
bicycle boxes (painted spaces in front of vehicle traffic) and
bicycle signal heads, in states where e-scooters are regulated
similar to bicycles. Transit planners can involve e-scooter
providers in changes to schedules and stop locations, to
improve last-mile connectivity and predictability for riders.
Space-time coordination may be more critical for special
events and in separated land uses such as university settings,
as compared with mixed-use settings with activities spread
throughout the night and day.

VI. DISCUSSION

A. Broader Impact and Limitations

This approach analyzes both automated and manual pedes-
trian, and e-scooter interaction data shows new opportunities
for supporting safety with emerging travel modes. A review
of previous studies showed a need for studies that crowd-
source safety information that is missed by police collision
records. Our approach may be adaptable to support practical
pedestrian safety, such as through the development of a real-
time collision warning system. However, our study is not
without limitations. One main limitation of our field study was
that its scope was restricted to the two suburban and urban
campuses and surrounding neighborhoods of one university.
Subsequently, some of the results and insights gained from
the study may be more directly applicable to our university’s
infrastructure and regulations, locally-available micromobility
vehicles, riders, and pedestrians. Our data collection also did
not capture encounters with any privately owned e-scooters
as most of them do not emit periodic BLE packets. Our
results may also suffer from sampling bias due to the low
number of participants and the specific recruit channels used.
That being said, our first-of-a-kind study’s methodology and
analyses (including the employed statistics and benchmarks)
can serve as a blueprint on how crowd-sensed micromobility
data can be used to enable similar safety-related studies in
other urban communities. Due to the privacy-sensitive nature
of the location data collected in this study, our dataset will be
made available only to researchers upon their request.

An essential aspect of our study is that it only relies
on participating pedestrians to passively crowd-sense the e-
scooter encounters and other sensor data on-board their mo-
bile devices. Although such an approach has its advantages
(e.g., relatively low study deployment cost), if this data is

supplemented with sensor data collected from the e-scooters
themselves, for example, video feed from a camera mounted
on the vehicles or packets received by the vehicles’ BLE
receivers, it could result in an even better analysis. However,
employing commercially-operated e-scooters to collect data
is not easy due to restrictions put in place by the service
providers owning these vehicles. Researchers could deploy
their own micromobility vehicles testbed for this purpose,
which could enable a much easier data collection process, but
deployment and maintenance of such a testbed would be much
more expensive.

B. Participants’ Perception about Safety

Our study ended with participants completing a post-study
survey (outlined in Appendix A). In contrast to the quantitative
encounter data which helped us gain useful insight on how
riders’ mobility patterns and infrastructure-related constraints
within shared spatio-temporal zones or spaces could impact
pedestrians’ safety, the post-study survey response data from
participants will shed light on their subjective perception of
this issue. This survey comprised of two parts: a set of
questions to measure how well our data collection application
(specifically, the notifications and the manual feedback inter-
face) performed, and another set of questions to capture par-
ticipants’ interests and preferences vis-à-vis pedestrian safety
and mobile device based safety applications. One highlight
of responses to the first set of questions is that despite
having a minimum 15-minute interval between sending e-
scooter detection notifications, one-third of all participants
found these notifications annoying. This observation is not
surprising as there are many HCI studies [47], [48] that
show that notifications have a very high chance of causing
annoyance if they are not well-designed, and could eventually
disengage users. Fortunately, as our application was passively
collecting encounter data irrespective of whether participants
responded to or ignored our notifications, it did not impact our
data collection process significantly. Another highlight is in the
responses received to our second set of questions, where 58%
of the participants expressed interest in a mobile application
that would alert them about potential encounters with electric-
or e-scooters. Although this shows that there is significant
interest among users to protect their safety from upcoming
micromobility transportation vehicles, it also shows that a sig-
nificant number of users (42%) are either not interested in such
an application or are indifferent to the problem of pedestrian
safety from such vehicles. Given the number of participants
who were annoyed at the frequency of notifications (from our
application), our hypothesis is that the 42% of the participants
who did not express interest in a micromobility vehicle alerting
application responded that way because of their displeasure
with the high number of notifications in our data collection
application. Although our data collection application was not
a pedestrian safety application (because it notified users of all
encounters and not only the hazardous ones), the above results
highlight an important property that any safety application
should possess – a good balance between useful functionality
and user engagement through carefully designed notifications.
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VII. CONCLUSION

We conducted a field study to understand the current state
of pedestrian safety in our urban community, in relation
to e-scooters. In the field study, we crowd-sensed real-time
encounter data between e-scooters and pedestrian participants
on two distinct urban university campuses over a three-month
period. We analyzed specific spatio-temporal metrics and used
them as benchmarks to understand the impact on pedestrian
safety from e-scooter services. Our analysis uncovered en-
counter statistics, mobility trends and hotspots which were
then used to identify potentially unsafe spatio-temporal zones
for pedestrians. We also speculate planning and infrastructure
improvements that may help reduce the number of unsafe
spatio-temporal zones. Our work provides a blueprint on how
crowd-sensed micromobility data can enable similar safety-
related studies in other urban communities.
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APPENDIX A – POST-STUDY SURVEY

Study Application Usage
1) How often did you receive the feedback notifications from

the study application?

Rarely 1 2 3 4 5 Very often

2) Did you at any point find the feedback alert notifications
to be annoying?

Yes No

3) If yes, did you turn the notifications off?

Yes No

4) How effective was the notification mechanism?

Not effective at all 1 2 3 4 5 Very effective

General Pedestrian Safety
6) Have you ever used any wearable technology that provides

pedestrian safety?

Yes No

7) If yes, please specify some.

8) Would you be interested in a smartwatch application that
alerts you about electric scooters in the vicinity?

Yes No

9) If yes, what type of alert would you suggest for this
scenario? Select all that apply.

Audio (e.g. beep)
Visual (e.g. flashing LED light)

Tactile (e.g. vibration)
A combination of the above
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