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Abstract—The feasibility of malicious keystroke inference
attacks on mobile device keypads has been demonstrated by
multiple recent research efforts, but very little has been accom-
plished in the direction of protection against such attacks. One
common assumption in these attacks is that the adversary has
knowledge of the size and layout of the keypad employed by the
target user, which is reasonable as keypad layouts and sizes are
generally standard. Thus, an effective protection strategy against
such keystroke inference attacks would be to randomly change
the layout of the target keypad. However, before proposing
unconventional changes to the widely used and highly familiar
default keypads, a comprehensive usability evaluation is required.
This paper accomplishes this goal by comprehensively studying
the usability of randomized keypads that employ varying degrees
of randomization in terms of key size, sequence and position.
The privacy-usability trade-off of different randomized keypad
strategies is then analyzed by empirically comparing their ease-
of-usage and security assurance.

I. INTRODUCTION

Users have been increasingly using their mobile devices and
smartphones to enter personal and private information, such as,
PIN, credit card numbers, passwords and telephone numbers.
However, touchscreen-based numeric keypads on these mobile
devices and smartphones are becoming increasingly more
vulnerable to side-channel keystroke inference attacks, which
results in a serious invasion of privacy of mobile users. Kune
et al. [8] leveraged on a common assumption that an audio
feedback to the user is imparted for each button pressed, and
demonstrated the possibility of inferring keystroke sequences
based on time delays between keystrokes. Yue et al. [32] used
computer vision to analyze the shadow formation around the
fingertip to automatically locate the touched points. Simon et
al. [24] used microphone to detect touch events, while the
camera is used to estimate the smartphone’s orientation, and
correlate it to the position of the digit tapped by the user.
Sun et al. [29] used video recordings of the backside of a
tablet to infer typed keystrokes, based on the observation that
keystrokes on different positions of the tablet’s soft keyboard
cause its backside to exhibit different motion patterns. Zhang
et al. [33] analyzed finger smudges left on the touch screen
surface to infer touch patterns, with remarkable success.
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Motion sensors, such as, accelerometer and gyroscope,
represent another class of side-channels for accomplishing
keystroke inference attacks that have been highly researched.
Tapping at different locations on a touchscreen results in
unique movements of the mobile device which can be captured
by eavesdropping on-board motion sensors. Cai et al. [4] were
one among the first to use this observation to train multi-class
classifiers for each of the ten spatially separated numbers of a
keypad, and were able to correctly predict up to 70% of test
keystrokes. Owusu et al. [18] extended the side-channel attack
from numeric keypads to soft QWERTY keyboards. Maiti et
al. [17] used a smartwatch to demonstrate that an external
device’s motion sensors can also be used to infer keystrokes
made on a mobile keypad. Lack of any access control to
motion sensors on existing mobile (and wearable) operating
systems further improves the feasibility of such motion side-
channel based inference attacks.

Interestingly, all the above attacks share one common as-
sumption: the numeric keypad employed by the target user has
a standardized key layout (Figure 1) known to the adversary.
Intuitively, this means that if the keypad layout is changed
from the standardized layout unbeknownst to the adversary
then the above attacks will perform poorly. Thus, such a dy-
namic keypad layout strategy is an appealing defense strategy
against side-channel keystroke inference attacks. However, as
an adversary can also re-train the attack framework for the new
keypad layout, changing the keypad layout just once (or in a
predictable fashion) will not be an effective defense. In order
to prevent an adversary from knowing the keypad layout in use
at any given time, this change in layout should be randomized.
In Section IV, we present different keypad randomization
strategies, in terms of key size, sequence and location. The
primary goal of these strategies is to reposition the on-screen
keys such that an adversary cannot correctly predetermine the
keypad layout in use at any given time. Without an accurately
predetermined keypad layout, the adversary will be unable
to train or set up the attack framework, and an improperly
trained attack framework will result in erroneous inference
of keystrokes. Interestingly, a major smartphone manufacturer
recently introduced a custom authentication method called
“Random PIN entry” [16], which implements a randomization
strategy in order to restrict side-channel attacks.

While randomized keypads could provide an effective de-
fense against keystroke inference attacks, it also raises us-



Fig. 1: Default keypad.

Fig. 2: A common typing
scenario.

ability concerns. The default keypad (Figure 1) is widely
used and many users have gradually become habituated to the
static layout. Thus, randomizing the keypad brings two new
challenges: (a) users may be uncomfortable typing on a keypad
different from the one they are habituated to, and (b) as the
keypad changes randomly, users will always face an unfamiliar
keypad. If users are discomforted to a level where they may
opt not to use random keypads for the sake of privacy, then it
cannot be proposed as an effective defense mechanism against
inference attacks. Therefore, before recommending the use
of randomized keypads for privacy protection, it is critical
to evaluate the usability of the various layout randomization
strategies. In order to achieve this goal, we comprehensively
assess the usability and perceived workload of typing on
keypads generated by each of the proposed randomization
strategies with the help of actual typing experiments involving
a diverse set of human subjects. We also compare the rate
of mistyping among all strategies, and attempt to determine
whether one strategy is more usable than the others. In addition
to this, we also evaluate if usability is positively influenced by
distinguishable visual features, i.e., by coloring each key with
an ascending shade of gray. Finally, by comparing their empir-
ical ease-of-usage with their analytical security assurance, we
attempt to study the privacy-usability trade-off (if one exists)
in using different types of randomized keypads.

II. ATTACK DESCRIPTION

We consider the scenario of a potential victim typing on
a smartphone’s numeric touchscreen keypad (Figure 2) in the
presence of an adversary whose goal is to infer the keystrokes
typed by the victim. For on-device inference attacks using
device sensors as information side-channels, the adversary
may bug or eavesdrop on the target’s smartphone [4], [18],
[24] (and/or paired smartwatch [17]) by installing a malicious
application which records the activity of certain on-board sen-
sors. This step can be achieved by exploiting known software
vulnerabilities or by tricking the victim into installing a Trojan
or a malicious code hidden within a useful application. The
malicious application also maintains a covert communication
channel with the adversary, and periodically uploads the
eavesdropped data to an adversarial server by means of this
channel. For external inference attacks [8], [29], [32], [33],
the adversary captures relevant keystroke characteristics from
a physically close position, using appropriate eavesdropping
devices, such as, microphones or wireless transceivers. We
assume that the adversary has sufficient storage and com-
putational resources to process the eavesdropped data and
successfully carry out both types of attacks. However, we

assume that the adversary cannot visually eavesdrop or
observe the keypad (and the victim’s keystrokes) and does not
have the ability to install system level key-logging applications
to directly obtain the typed keystrokes.

III. RELATED WORK

A. Protection Against Side-Channel Attacks
Due to the increasing use of various sensors in mobile and

wearable devices as information side-channels to accomplish
privacy invasive inference attacks, the topic of defending
against such attacks has gained prominence. Cai et al. [5]
drew attention on the limitations of current mobile systems
in mitigating side-channel attacks. They also pointed out the
following desirable properties in any defense solution: (i)
Security: the solution must protect against side-channel infer-
ence attacks, (ii) Usability: ideally, the solution should require
no extra effort from users and if extra effort is unavoidable, it
should not disrupt the users’ work flow, (iii) Backward and
Forward Compatibility: the solution should require no or
minimal modification to existing applications and operating
systems, (iv) Performance: the solution should have no or
minimal overhead, and (v) Versatility: the solution should be
deployable on various types of mobile hardware, software, and
user interfaces. If a defense solution fails to fulfill any of these
properties, it may not be well accepted by users.

Controlling access to sensors that has the potential to be
used as side channels is one form of defense mechanism
that can be used. However, as mobile and wearable systems
currently offer very limited access control options (mostly
restricted to location and microphone sensors), fine-grained
access control to all sensors will require major modifications
to these systems. Context-aware access controls [6] could
relieve users from manually changing and adjusting access
settings, however they would add significant performance
and energy overhead, are non-versatile and difficult to setup
and would require major modifications to current operating
systems. Furthermore, sensor access controls do not protect
against applications that gain legitimate access to these sen-
sors. Enforcing system-wide reduced sensor sampling rate
or disabling sensors is one suggested defense against on-
device keystroke inference attacks [17], [18]. However, while
system-wide down-sampled or disabled sensors may provide
protection, it may disrupt useful non-malicious applications as
well. Moreover, neither access control, nor limiting sampling
rate, protects against external inference attacks. There has
been limited work on protecting smartphone users against
external side-channel attacks. Shrestha et al. [23] proposed the
injection of noise in motion sensor readings, in order to protect
against motion sensor based inference attacks. However, their
solution is ineffective against most other classes of keystroke
inference attacks. Alternate forms of authentication (e.g., bio-
metrics) are also becoming popular, but the vast majority of
mobile devices are not equipped with the enabling hardware
and/or software. Thus, mobile users will continue to use touch
screen-based keypads to enter sensitive information, including
authentication data, and there is an increasing need for a
keypad protection mechanism that satisfies most of the design
criteria identified by Cai et al. [5].

2



B. Protection by Randomization

Randomizing the keypad prevents an adversary from prede-
termining the keypad layout, which can serve as an effective
defense against both external and on-device attacks. Random-
ized keypads are already known to be used commercially in
electronic door access control systems [26], although with
limited flexibility in terms of available set of randomization
strategies. Ryu et al. [21] were among the first to study
randomized keypads and they observed that their randomized
keypad resulted in longer completion times compared to a
conventional keypad. However, their study was not geared
towards mobile devices, considered only one randomization
strategy and did not comprehensively evaluate user workload
and other usability parameters except completion times. In this
research effort, we propose, implement, and comprehensively
evaluate different randomized keypads (or RandomPad) for
mobile devices. RandomPad does not add significant over-
head on system performance as it is essentially a rearranged
keypad layout. It can be easily implemented as a third party
application on popular mobile operating systems such as
Android and iOS, without requiring support from operating
system developers. RandomPad can also be versatile, when
implemented according to scalable design principles [12]. In
this paper we analyze the remaining two design properties
outline in Section III-A: security and usability.

IV. RANDOMIZATION STRATEGIES

We outline six representative strategies that span the entire
spectrum of strategies from purely-random to partially-random
keypad layouts, i.e., the latter preserves some characteristics of
the default layout. For stronger security, keypad randomization
can be performed either at the beginning of every keystroke
or at the beginning of each typing session.

A. Key Sequence Randomization

The default keypad follows a sequence of ascending num-
bers. Key sequence randomization strategies reposition the
keys by changing the order of keys, by not following the
ascending order. Following are the three key sequence ran-
domization strategies we use in our study, all of which keep
the key sizes unchanged:

• Row Randomization (RR): In row randomization (RR),
rows from the default keypad are randomly ordered while
preserving the order of the numbers within each row.
Figure 3(a) shows an example of RR.

• Column Randomization (CR) In column randomization
(CR), columns from the default keypad are randomly
ordered while preserving the order of the numbers within
each column. Figure 3(b) shows an example of CR.

• Individual Key Randomization (IKR) In individual key
randomization (IKR), individual keys are randomly re-
arranged without maintaining any column or row order.
Figure 3(c) shows an example of IKR.

B. Key Size Randomization (KSR)

A key size randomization (KSR) strategy preserves the
sequence of numbers on the default keypad. Instead, the

randomization factor is incorporated within the size of each
key. Changing the key sizes also repositions them from their
default locations on screen. In our design of KSR, we use
a hidden 7 × 6 grid layout (scaled to fit the width of the
screen), as shown in Figure 3(f). One randomly selected key
is enlarged to appear as a 4× 4 block on the grid, other keys
in the same row as the large key appear as 4× 1 blocks, and
all other keys appear as 1× 2 blocks on the grid. Figure 3(d)
shows an example of the KSR strategy. Note that the 7×6 grid
layout is not visible to users; only the overlaid keys are visible.
As the default sequence is preserved, it may be necessary to
randomize key sizes after each key press to prevent relative
positioning based attacks.

C. Keypad Location Randomization (KLR)

A keypad location randomization (KLR) strategy also pre-
serves the sequence of numbers of the default keypad. The
randomization factor is instead incorporated in the location of
the keypad, because changing the keypad location repositions
all keys from their default locations on the screen. Figures
3(e) shows an instances of the keypad location randomization
we consider in our study. In this case, we again use a hidden
7× 6 grid layout similar to KSR. Each key appears as a 1× 1
block, and the entire keypad appears as a randomly selected
contiguous 4 × 3 block on the grid (16 possibilities). The
distribution of keys on the hidden 7 × 6 grid layout happens
to be same for both KSR and KLR (Figure 4). Similar to
KSR, keypad randomization in KLR may need to be done at
every key press to prevent relative positioning based attacks.
Moreover, key sequence randomization strategies can also be
combined with KSR and KLR for additional security.

D. Security Analysis

Next, we probabilistically analyze the security offered by
these five randomization strategies. For this analysis we as-
sume that the adversary is able to cluster keystroke positions
not just on a default sized 4× 3 keypad, but also for smaller
blocks of a 7×6 layout (used in KSR and KLR), without any
error (i.e., 100% accuracy). The adversary is also assumed
to know the randomization strategy currently in use and that
a new randomized keypad layout within the corresponding
strategy is used by the user (victim) for every keystroke (that
the adversary is attempting to infer). As the keypad layout
is randomized, the best an adversary can do is to guess the
mapping between the randomized and default keys. We derive
the successful guessing probability of the adversary as an
indication of the security assurance or guarantee each strategy
provides under such a strong attack scenario. The lower this
probability for a particular randomization strategy, the higher
is its security assurance.

Consider a twelve key (including “∗” and “#” keys) keypad
in IKR. The probability that an adversary guesses the mapping
of a digit correctly is 1

12 and the probability of correctly
guessing the entire mapping (of all the keys) is 1

12! . However,
in case of RR and CR, the adversary can improve its guessing,
which is intuitive. Knowing that keys within a row remain in
order, for a RR keypad, the adversary only needs to guess
the row mapping. The probability that an adversary correctly
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(a) (b) (c) (d) (e) (f)

Fig. 3: Examples of (a) RR, (b) CR, (c) IKR, (d) KSR and (e) KLR; (f) The hidden 7× 6 grid layout used in KSR and KLR.
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Fig. 4: KSR and KLR on-screen key distribution possibilities
on the hidden 7× 6 grid layout.

guesses a row (and thus keys in it) is 1
4 , and all four rows

is 1
4! . Similarly for CR, the probability that the adversary

correctly guesses a column (and thus keys in it) is 1
3 , and all

three columns is 1
3! . Due to crossover regions on the keypad,

accurately guessing key mappings in KSR and KLR is a bit
more complicated. In case of KSR, one large key displaces
the position of other keys, leading to non-zero probabilities
of multiple keys being at the same on-screen location. As
the key distribution possibilities are same for KLR, it also
shares the same probability distribution as KSR. Assuming
that a keystroke touch can occur uniformly on any of the
42 (7 × 6) on-screen blocks, the probability of an adversary
correctly guessing a key’s position is:

1

42

∑ 1

Ni,j
,∀i, j (1)

where, Ni,j is the number of keys that could possibly oc-
cupy block i, j. Solving Equation 1 using the distribution of
keys (Figure 4) results in a success probability of 0.34193.

Guessing the entire keypad in KSR and KLR is relatively
uncomplicated, as the adversary has to guess only the large key
in KSR (probability 1

12 ) and one among the sixteen possible
locations of the keypad in KLR (probability 1

16 ). Table I in
ranks the adversary’s success probabilities for the different
randomization strategies. These probabilities represent a best-
case scenario for the adversary.

TABLE I: Security assurance of the five proposed randomiza-
tion strategies. Lower rank is better security.

Randomization
Strategy

Correct Entire Keypad
Guessing Probability

Security
Assurance Rank

CR 1
3!

= 0.16667 5

IKR 1
12!

= 2.08× 10−9 1

KLR 1
16

= 0.0625 3

KSR 1
12

= 0.08333 4

RR 1
4!

= 0.04167 2

V. HUMAN FACTORS

The above security analysis shows that randomizing keypad
layouts is an effective protection strategy against side-channel
keystroke inference attacks. It is also efficient from a system
performance perspective, easy to implement and versatile.
However, a significant concern remains to be answered: “Will
users employ and effectively be able to use such a protection
mechanism”? As the proposed protection mechanism is simply
a different and highly dynamic user-interface, we attempt to
answer this broad question by using principles and techniques
from the area of human-computer interaction (HCI) [7] and
cognitive psychology [15]. Designing usable input interfaces,
e.g., keypads, for mobile devices has been a significant techni-
cal challenge [11]. For mobile devices, the main constraint in
designing usable input interfaces is the screen size, however
earlier research has shown that smaller keypad sizes do not
negatively affect the efficiency or accuracy of user input [22].
Thus, in this work we will focus only on how random positions
and sizes of the keys on the keypad impact their usability. In
our quest for answering the above usability question, we will
primarily focus on measuring user effort and workload while
using these randomized input interfaces (or RandomPad) by
means of well-known quantitative and qualitative metrics, as
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discussed below. We would also like to investigate if certain
design changes would improve or reduce user workload.

Keypads with randomized key sequences (e.g., RR, CR, IKR
keypads) pose a unique challenge to human cognition. Users
may often find themselves searching for a particular key, which
would slow down overall typing speed. Physiological factors,
such as, visual acuity, light accommodation, dexterity, working
memory, and reaction times [9], [28] can further impact this.
Thus, time required for the typing task completion and the
number of errors during the task are some of the metrics that
will be used to evaluate user-effort while using RandomPad.
Another commonly used HCI technique to empirically mea-
sure the user-effort of interfaces, and thus its usability, is eye-
tracking. Eye-tracking devices can capture fixation duration
and number of fixations while the user is interacting with the
interface. The average fixation duration indicates how long
it takes for users to encode the visual information, which
is influenced by the readability of the characters, such as,
font size, font style, spacing and contrast of background and
foreground, etc. [20]. The number of fixations to complete a
task is correlated with the difficulty to locate the target (within
the task). In this work, we also use these metrics (captured by
means of an eye-tracking device) to quantify the difficulty of
the user in locating the keys on RandomPad.

Besides these, we also analyze the usability of RandomPad
by employing user-provided subjective workload and usability
measures. For instance, NASA-TLX [10] is a well-known scale
for subjectively measuring mental workload. Mental workload
measures the subjective experience of the effort to complete
a task [2]. A high mental workload is often detrimental to
task performance and can reduce the chances of the product
or interface being adopted or used by users. The NASA-
TLX is a multidimensional scale to measure the perceived
workload, including, the mental, physical and temporal de-
mand, overall performance, frustration level and effort. We
employ the NASA-TLX scale in our experiments to capture
the mental workload of participants after they have used
RandomPad. Similarly, we also measure the overall usability
of the RandomPad design by using another subjective scale
called the System Usability Scale (SUS) [3]. The SUS is a 10-
item 5-point scale, which produces a usability score ranging
from 0 to 100, with a larger value indicating a more usable
interface. We feel that a combination of task completion per-
formance measures, eye fixation measures using eye-tracking,
and subjective mental workload and usability measures will
provide a converging evidence to illustrate the usability of
RandomPad, and thus provide some answers to the broad
usability related question posed earlier.

As discussed earlier, certain physiological or environmental
factors may impact human cognition of the interface, and
thus its usability. Pattison and Stedmon [19] suggested that
certain physiological factors impacting interface usage can
be combated with a design that has improved illumination
and provides certain distinguishing visual cues/feedback to the
user. Luminance differences and contrasting shades (e.g., using
a gray-scale) have been particularly successful in capturing
user attention [1], [27], as well as, in distinguishing objects
in medical diagnostic images [13], [30]. This motivated us

Fig. 5: Aiding usability with contrast: Instance of IKR keypad
in ascending gray-scale.

to adopt a similar approach where our goal is to evaluate
whether usability of our RandomPad interface improves when
additional visual cues are provided to the users, for instance,
by using contrasting shades of gray to represent each of
the keys. More specifically, we study an enhancement to
RandomPad, where the keys on the randomized keypad are
colored with an ascending shade of gray, i.e., shade of key
“0” being the lightest (#D8D8D8) and “9” being the darkest
(#000000). The luminance of keys between “0” and “9” are
increased in uniform steps. Figure 5 shows an exemplary
instance of IKR keypad in our ascending gray-scale scheme.
Note that keys “*” and “#” are excluded from this particular
usability study. As the key sequence is preserved in KSR and
KLR, we do not expect any potential benefit from the gray-
scale enhancement, and thus, are not evaluated either.

VI. STUDY

Our study comprised of lab-based experiments involving
human subjects, where participants performed typing tasks
on a set of assigned smartphone numeric keypads. Each
participant is randomly assigned only one of the five keypad
randomization strategy, and all experiments administered to
each participant are based on the assigned strategy. The
assigned strategy is uniformly distributed (balanced) across
all participants. The entire experiment for each participant
is divided into two sessions: Natural Typing and Dictated
Typing. In each scenario, the participant types using the
default, randomized (with the randomly assigned strategy) and
gray-scale (assigned only if the participant was assigned RR,
CR or IKR) keypads. Our experiment (methodology and data
collection process) was reviewed and approved by Wichita
State University’s Institutional Review Board.

A. Participants

Our study was conducted by recruiting 100 participants, the
majority of whom were affiliated with our university. As an
incentive, students were offered participation credits which
would partially satisfy certain academic requirements, while
non-students were compensated with $10. The participants
first completed a pre-survey demographic questionnaire, which
included questions on smartphone usage and privacy pref-
erences. Then an introductory video, explaining the concept
of randomizing keypads and how it can help protect against
certain eavesdropping or side-channel attacks, was shown
to them. Participants were then introduced to the specific
randomization strategy assigned to them using another video.
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However, they were not introduced to the remaining (non-
assigned) randomization strategies. This was done to prevent
any bias in their response(s). Participant demographic infor-
mation and preferences are outlined in Table II. Interestingly,
when shown a sample random keypad screenshot (according
to the assigned randomization strategy), less than 25% were
in favor of using the random keypad for typing sensitive
information. Note that this response was recorded before
they were introduced to the side-channel keystroke inference
attacks and how randomization can help protect against it.

TABLE II: Demographics and preferences of participants.

Gender
56% Female
44% Male

Occupation
33% Employed

67% Student

Smartphone Ownership
Duration

26% Less than 5 Years
74% More than 5 Years

Current Smartphone
59% iOS (iPhone)

41% Android

Willingness to Use Random
Keypad (Before Study)

22% In Favor
78% Not in Favor

B. Apparatus

Our experiments were conducted by using an Android im-
plementation of the RandomPad application, designed specifi-
cally for this study. The application would display the keypad
(Figure 3) and a short instruction of the task to perform. As
the participants type on the keypad, the application records the
dictated number (if applicable) along with the typed number
and the corresponding time-stamps. The application was also
programmed to the flow of our experiments, and it automat-
ically enforced certain aspects of the experiments, such as
random ordering of the natural and dictated typing scenarios,
rest periods between various parts in each scenarios, pausing to
record responses to the NASA-TLX and SUS scales, etc. The
order in which the two experimental scenarios (discussed next)
are presented to the participants is counterbalanced to prevent
bias in the results. The keypad design in our application (for
each randomization strategy) followed well-accepted standards
[14], for example, the smallest height and width of a key was
57dp, which is comfortably higher than the standard minimum
of 48dp. We used the Moto E smartphones (1st generation)
in our study. The Moto E features a 4.3 inch touch screen
with 540 × 960 pixels (∼ 256 ppi pixel density). We also
used the head-mounted Ergoneers Dikablis Professional Eye-
Tracking system, equipped with two eye movement tracking
cameras and a forward scene camera, to measure participants’
eye activity while typing.

C. Session 1: Dictated Typing (DT)

In this experimental session, participants were prompted
with visually and acoustically dictated sequences of pseudo-
random single digit numbers. Length of each number sequence
was uniformly varied between 3 (representing length of credit
card security codes), 4 (representing length of phone unlock
codes), 5 (representing length of zip codes), 7 (representing
length of phone numbers without area code), 8 (representing

length of birth dates), 10 (representing length of phone num-
bers with area code), and 16 (representing length of credit
card numbers). This session of the study is further divided
into three parts: Default Keypad Typing, Randomized Keypad
Typing, and Gray-scale Randomized Keypad Typing. Each part
consisted of ten activities, where in each activity the partici-
pants typed the dictated sequence of single digit numbers on
the displayed keypad. There was a ten second time separation
between each activity and a one minute separation between
the three parts, allowing participants enough opportunities to
rest.

1) Task: The primary task for participants is to follow the
dictation and type the dictated digits on the displayed keypad.
Each activity begins when participants are ready and they tap
on the “Start” button on the smartphone screen. Immediately
after tapping the “Start” button, the keypad appears and
dictation starts. Participants can see the dictated digits on
screen or hear the corresponding audio prompt, or both. No
time restriction is imposed on participants, and new digits are
dictated after the participant presses a key in response to the
last dictated digit.

2) Part 1.1 – Default Keypad: In this part, participants type
on the default keypad, with no randomization in key size or
sequence. This serves as a reference point for our performance
and accuracy evaluation.

3) Part 1.2 – Randomized Keypad: In this part, the Ran-
domPad application generates and displays an instance of
random keypad, using the randomization strategy assigned to
the participant. For KSR, KLR randomization strategies, a
new instance of random keypad is generated and displayed
after every key press. For other (RR, CR, IKR) randomization
strategies, the instance of random keypad generated at the
beginning of each activity is used for the entire activity.

4) Part 1.3 – Gray-scale Randomized Keypad: This part is
administered only to those participants who are assigned RR,
CR, and IKR strategies. The RandomPad application generates
and displays an instance of random keypad, using the ran-
domization strategy assigned to the participant. Additionally,
keys on the randomized keypad are shaded with an ascending
shade of gray, with color of key “0” being lightest and “9”
the darkest, as discussed earlier.

D. Session 2: Natural Typing (NT)

In this session, participants were instructed to type infor-
mation already known to them at their own natural pace.
Participants were asked to type their residence area code (3
digits), zip code (5 digits), phone number without area code
(7 digits), birth date (8 digits), or phone number with area
code (10 digits), in random order. This session is also divided
into three parts, i.e., Default Keypad Typing, Randomized
Keypad Typing, and Gray-scale Randomized Keypad Typing,
with each part consisting of ten activities. The time intervals
between parts and activities remain the same as before.

1) Task: The primary task for participants is to type familiar
numbers on the random keypad. Before beginning each typing
activity, the participants are visually communicated about the
number they have to type in that activity. The activity begins
when participants are ready and tap on the “Start” button on
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the smartphone screen. Immediately after tapping the “Start”
button, the keypad appears and participants are expected to
start typing. No time restriction is imposed on participants,
and activity finishes when the participants are finished typing
in the expected number of digits (based on what was asked to
type).

2) Parts: Similar to the dictated typing session (i.e., session
1), the natural typing session (i.e., session 2) has three parts:
(i) Part 2.1 – Default Keypad, (ii) Part 2.2 – Randomized
Keypad, and (iii) Part 2.3 – Gray-scale Randomized Keypad.
The description of the activities performed by the participants
and the keypads used in each of these parts is similar to the
previous session; the only difference is that rather than typing a
dictated sequence of numbers in each activity, the participants
type a known sequence of numbers (as outlined before) at their
own pace.

E. Procedure and Data Collection

Participants were seated in a lab environment and given a
smartphone installed with the RandomPad application. Before
beginning each session of the study, a short video was shown
to the participants explaining the task to be completed in each
part. If participants made a mistake during typing, they were
instructed to continue to the next number without attempting
to rectify it. The mistyping is recorded for evaluating accuracy
in typing. To measure accuracy during the Natural Typing
session, the residence area code (3 digits), zip code (5 digits),
phone number without area code (7 digits) and date of birth (8
digits) were collected from each participant beforehand in the
pre-survey. As discussed in sections V, subjective usability and
mental workload perceptions of participants is captured using
the SUS and NASA-TLX scales. The SUS and NASA-TLX
surveys were completed by the participants after each part
of either session 1 or session 2, whichever came temporally
later (as the order of the Dictated Typing and Natural Typing
sessions is counterbalanced). After finishing both sessions of
the experiment, the participants completed a post-survey.

VII. RESULTS

In this section, we outline results from both the natural and
dictated typing sessions of our experiments.

Q1: Do randomized keypads increase the task completion
time when compared to the default keypad?: We investigate
the difference in task completion times between default and
randomized keypads with the null hypothesis that their means
are not significantly different. Figures 6 and 7 show the
average time taken by the participants to type a key, in the
dictated and natural typing sessions, respectively. The results
are further categorized by the keypad randomization type. It
is evident that the average task completion time on random
keypads is increased in both cases, compared to the default
keypad. However, the overall task completion time is less
in natural typing, compared to dictated typing. This is most
likely due to the extra cognitive task performed to follow
the dictation while typing. Among the five randomization
strategies, typing on IKR (mean differences w.r.t. default
keypad, dµDTIKR = +249.78 ms, dµNTIKR = +140.66 ms) and
KSR (dµDTKSR = +263.61 ms, dµNTKSR = +137.07 ms) took
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Fig. 6: Average time taken per key typed in Dictated Typing.
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Fig. 7: Average time taken per key typed in Natural Typing.

relatively more time compared to CR (dµDTCR = +105.14

ms, dµNTCR = +98.75 ms), KLR (dµDTKLR = +116.32 ms,
dµNTKLR = +107.75 ms), and RR (dµDTRR = +106.60 ms,
dµNTRR = +144.62 ms). In two-tailed paired sample t-test [25],
the combined mean increase in time taken by participants to
type a key are dµDT = +168.3 ms and dµNT = +125.8 ms,
with p < 0.001 in both DT and NT. Since p < 0.05 (the
assumed significance level), the null hypothesis is rejected. In
other words, we found that randomized keypads do increase
task completion times, by approximately 21% for dictated and
16% for natural typing.

Q2: Do randomized keypads increase the error rate in the
primary task?: We investigate the difference in typing ac-
curacy between default and randomized keypads with the null
hypothesis that their means are not significantly different. Fig-
ures 8 and 9 shows the average accuracy of the typed numbers,
for the natural and dictated typing sessions, respectively. The
results are further categorized by the keypad randomization
type. In two-tailed paired sample t-test, the combined mean
decrease in typing accuracy are dµDT = −0.53% and dµNT =
−0.77%, with p = 0.06 in DT and p = 0.003 in NT. As
p > 0.05 for dictated typing, the null hypothesis is marginally
accepted. However, the null hypothesis is rejected in case of
natural typing, which means the typing accuracy may be lower
on the randomized keypads. Nonetheless, mean accuracies in
all five randomization strategies are above 95% for both default
and randomized keypads, with mean difference less than 1%
compared to the default keypads. As the participants’ primary
task was to type the number sequences correctly, and not to
type as fast as possible, it may be concluded that the task
completion time was traded off for higher accuracy by the
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Fig. 8: Dictated Typing accuracy.
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Fig. 9: Natural Typing accuracy.

participants.
Q3: Is there a learning curve associated with randomized

keypads?: In order to analyze if the typing performance (speed
and accuracy) improves with more usage of the randomized
keypad, we compare the average per key typing time for the
first and last ten numbers typed with random keypads, in
the natural typing session. We observed that the average task
completion time is significantly lower for the last ten numbers
(compared to the first ten numbers), for all five randomization
strategies. The overall mean drop in per key typing time is
recorded as dµNTL10−F10 = −163.09 ms, with p < 0.001.
However, we did not observe any significant improvement
in accuracy. This suggests that there exists a learning curve
in using RandomPad, primarily to learn the randomization
strategy, rather than memorizing an instance. As we see
marked improvements within a relatively short experimental
duration, we are optimistic that randomized keypad usage
performance will only further improve with prolonged use.

Q4: How much more effort do randomized keypads
take, compared to the default keypad?: We investigate the
difference in user effort required to type on the default versus
randomized keypads with the null hypothesis that the mean of
their NASA-TLX scores are not significantly different. How-
ever, the randomized keypads scored higher on the NASA-
TLX scale for all five randomized keypads (Figure 10), with
an overall mean difference dµ = +16.87 and p < 0.001.
This suggests that participants required considerably more
perceived effort to use the randomized keypads. This obser-
vation is somewhat expected because of their familiarity with
the default keypad. KLR is reported to take the least effort
(dµKLR = +9.94) compared to the other four randomization
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Fig. 10: NATA-TLX scores for all the five randomization
strategies. Dictated and Natural Typing are combined. Lower
scores signify lesser workload for the user.
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Fig. 11: (a) Average fixation count and (b) average duration
per fixation, for Natural and Dictated Typing. Lower scores
signify lesser workload for the user.

strategies.
In addition to subjective metrics such as NASA-TLX, we

complement our results for workload by means of quantitative
metrics such as fixation counts and fixation duration from
the eye tracking data. Due to the significant setup time and
overhead involved, we collected eye tracking data from only a
subset of participants (more specifically, 53 participants). Fig-
ure 11 shows the average fixation count and fixation duration
recorded during the experiments involving these participants.
Higher fixation count indicates that the participants had to
view more areas of interest (AOI) before they were able to
locate the target key. The average fixation count on randomized
keypads is increased (+4) in case of natural typing, but
marginally decreased (-1) in case of dictated typing. On the
other hand, the average fixation duration (time spent per AOI)
increased (+19 ms) in case of dictated typing, but marginally
decreased (-3 ms) in case of natural typing. These results show
that, in certain scenarios, randomized keypads do increase the
difficulty in locating keys, resulting in increased workload.

Q5: How much less usable randomized keypads are, com-
pared to the default keypad?: We investigate the difference in
perceived usability of the default versus randomized keypads
with the null hypothesis that the mean of their SUS scores are
not significantly different. However, the randomized keypads
faired lower than the default keypad (Figure 12). The overall
mean difference dµ = −25.80 and p < 0.001 suggests
that participants felt that the default keypad is more usable.
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Fig. 12: SUS scores for all the five randomization strategies.
Dictated and Natural Typing are combined. Higher scores
signifiy better usability.

This observation is also somewhat expected because of their
familiarity with the default keypad. KLR is again reported to
be the most usable (dµKLR = −19.12) compared to the other
four randomization strategies.

In the SUS scale, a score lower than 50 indicates unaccept-
able for use; a SUS score larger than 70 indicates acceptable
for use; A score between 50 to 70 indicates marginally usable.
RR (mean SUS score = 56.13) is significantly lower on the
SUS scale compared to the other five randomization strategies.
On the other end, KLR (mean SUS score = 73) provides
acceptable usability and CR (mean SUS score = 67) is just
below the 70 mark. Thus, from a perceived usability perspec-
tive, KLR is preferred by the users over other randomization
strategies. Again, we are optimistic that randomized keypads
can achieve better usability scores if users get familiarized
with the distinct layouts.

Q6: Does gray-scale shading of randomized keypads
improve usability?: On the NASA-TLX (Figure 10) and SUS
(Figure 12) scores, there are no significant differences between
the randomized keypads without gray-scale shading versus
randomized keypads with gray-scale shading, indicating that
contrasting gray-scale shades on the keypad does not lower
the perceived workload or improve the perceived usability.
However, we observe that gray-scale shaded randomized key-
pads marginally lower the task completion times. The average
task completion time on gray-scale randomized CR, IKR
and RR keypads during dictated typing session is 901.70
ms versus 935.09 ms for just randomized CR, IKR and RR
keypads. This shows that our gray-scale shading scheme does
not significantly improve the usability of the RandomPad
interface. This may be because in our gray-scale shading
scheme the contrast between the shade of the digits and that
of the background is not optimal for certain keys, which can
create difficulty during the reading of those keys [34]. The
usability of gray-scale keypads could be potentially improved
by adjusting and optimizing this contrast between the different
shades.

Q7: Are smartphone users interested in adopting random-
ized keypads?: In the initial pre-survey recorded before the
participants were introduced to side-channel keystroke infer-
ence attacks, only 22% of the participants reported that they
would be willing to use a randomized version of the keypad.

On being more informed about the dangers of side-channel
keystroke inference attacks and how randomized keypads help
protect against such attacks, and after completing the experi-
mental trials, as many as 80% of the participants reported in
the post-survey that they would be willing to use a randomized
keypad in order to protect their privacy. Those participants
who reported “No” to this question (i.e., were not willing
to use the randomized keypad) in the post-survey reported
that they were more familiar, therefore more comfortable,
with the default keypad and that the randomization (of the
keypad) was confusing to them. Those who changed their
answer to “Yes” in the post-survey (i.e., were willing to use
the randomized keypad) primarily reported that their reason for
using an unfamiliar interface, such as, a randomized keypad,
would be to primarily enhance their privacy and to prevent
hackers from stealing their personal information.

VIII. DISCUSSIONS

In this section, we discuss some of the implications of our
study, and how researchers and developers can use our evalua-
tion results in order to implement and/or improve RandomPad.

A. Privacy-Usability Trade-Off

In our evaluation, it was clear that RandomPad negatively
affects users’ performance, workload and perceived usability.
While this was intuitive and an expected result, the effect on
usability, although present, was not large enough to make the
interfaces completely unusable. It should also be noted that
80% of the participants were still willing to use RandomPad
on a regular basis in order to input their sensitive information.
As participants were introduced to only one randomization
strategy (to receive an unbiased opinion about each strategy),
it is also likely that they may like another strategy better.
Therefore, we analyzed the privacy-usability trade-off of the
five different randomization strategies based on security assur-
ance ranking (Table I) and usability ranking (calculated using
typing speed, workload and perceived usability)1. Table III
shows the usability ranking calculations of the five different
randomization strategy. Comparing Table I and III, we see that
KLR ranks relatively highest on both (3 + 1 = 4) tied with
IKR (1 + 3 = 4), followed by RR (2 + 4 = 6), and CR (5 +
2 = 7), and KSR (4 + 4 = 8), respectively. In other words,
KLR and IKR provides the best balance between security and
usability, while KSR provides the least.

B. Recommendations to Developers

Users type sensitive information only a fraction of the time
they use a keypad. Having an always-on randomized keypad
may be an inconvenience to the users, whom may then choose
to not use randomized keypads altogether. A good design
should have an easily accessible and user-controllable (soft)
switch to turn on or off the key randomization, as and when
desired by the user. Whenever users feel that the information
they are going to type is sensitive in nature, they should be
able to easily turn on the randomization of the keypad. After

1As accuracy was marginally varying, we exclude it as a factor in the
usability ranking calculations.
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TABLE III: Usability rankings of the five proposed random-
ization strategies calculated using average typing speed (lower
better; dictated and natural typing combined), workload (lower
better) and perceived usability (higher better). Lower least rank
is better usability.

Randomi-
zation

Strategy

Typing
Speed
Rank

Workload
Rank

Perceived
Usability

Rank

Summed
Usability

Rank
(Least
Rank)

CR 1 2 2 5 (2)
IKR 4 3 3 10 (3)
KLR 2 1 1 4 (1)
KSR 5 4 4 13 (4)
RR 3 5 5 13 (4)

they finish typing the sensitive information, or in the case they
are typing non-sensitive information, they should be able to
easily turn off the randomized keypad and continue to use the
default keypad.

C. Limitations

Even though RandomPad is able to protect users against
several types of side-channel keystroke inference attacks, it
fails to protect against visual eavesdropping, also known as
shoulder-surfing. There are certain authentication schemes that
can defend against visual eavesdropping [31], but they (i)
require more effort from users and (ii) cannot be used to type
sensitive information other than device unlock codes.

IX. CONCLUSION

With the increasing number of side-channel attacks targeting
mobile keypads, user privacy is at stake. In this paper, we
proposed to used randomized keypads for typing sensitive
information on mobile device keypads. Randomized keypads
are able to sufficiently alter keystroke characteristics, such
that most of the side-channel attacks will fail. However, with
users accustomed to the default keypad for years, randomized
keypads face usability issues. Therefore, we comprehensively
evaluate the usability of randomized keypads, with the help
of 100 participants. We found that randomized keypads can
increase task completion time. We also found that randomized
keypads are perceived to be less usable and more work. How-
ever, the learning curve associated with randomized keypads
can improve user performance and usability with prolonged
use. Interestingly, even with the degraded usability of random-
ized keypads, participants were willing to use it for improved
privacy.
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