
Authors’ copy downloaded from: https://sprite.utsa.edu/

Copyright may be reserved by the publisher.

https://sprite.utsa.edu/

Social Puzzles: Context-Based Access Control in Online Social Networks

Murtuza Jadliwala, Anindya Maiti and Vinod Namboodiri

Wichita State University, Wichita, Kansas, 67260
Email: {murtuza.jadliwala, axmaiti, vinod.namboodiri}@wichita.edu

Abstract—The increasing popularity of online social net-
works (OSNs) is spawning new security and privacy concerns.
Currently, a majority of OSNs offer very naive access control
mechanisms that are primarily based on static access control
lists (ACL) or policies. But as the number of social connections
grow, static ACL based approaches become ineffective and
unappealing to OSN users. There is an increased need in social-
networking and data-sharing applications to control access
to data based on the associated context (e.g., event, location,
and users involved), rather than solely on data ownership and
social connections. Surveillance is another critical concern for
OSN users, as the service provider may further scrutinize data
posted or shared by users for personal gains (e.g., targeted
advertisements), for use by corporate partners or to comply
with legal orders. In this paper, we introduce a novel paradigm
of context-based access control in OSNs, where users are able
to access the shared data only if they have knowledge of the
context associated with it. We propose two constructions for
context-based access control in OSNs: the first is based on a
novel application of Shamir’s secret sharing scheme, whereas
the second makes use of an attribute-based encryption scheme.
For both constructions, we analyze their security properties,
implement proof-of-concept applications for Facebook and
empirically evaluate their functionality and performance. Our
empirical measurements show that the proposed constructions
execute efficiently on standard computing hardware, as well
as, on portable mobile devices.

Keywords-Online Social Networks, Access Control, Privacy,
Surveillance Resistance.

I. INTRODUCTION

An online social networking (OSN) service is a popular

tool for online users to connect with other users who are

either real-life acquaintances or have similar interests and

background. The Wall Street Journal reported that Face-
book’s1 user base had increased to one billion users at the

end of 2012 [1]. OSN services allow its users to maintain

a profile, update personal information and share pictures,

posts, activities, events, and interests with other users in

their social network. The privacy of personal and shared

information, with respect to the service provider and other

users, is of paramount importance to OSN users [2].

In order to provide privacy with respect to other users,

OSNs enforce access control policies on the data being

shared, wherein, only a specific set of receivers dictated by

the policy can get access to a user’s personal and shared

information. Existing OSN access control mechanisms are

1Facebook, https://www.facebook.com

based on either static policies (for example, by default all

users in the friend list are allowed to view all posted images)

or fine-grained ACLs where specific groups within a user’s

social network are allowed access to specific categories of

the user’s information [3]. These access control mechanisms

are mostly user-centric, rather than information or data-
centric. In a recent study [4] of over 250 users, it was found

that while strangers or non-friends are the most concerning

audience when it comes to sharing data on Facebook, most

users take appropriate steps to mitigate those concerns.

However, 16.5% of the participants had at least one post

that they were uncomfortable sharing with a specific friend

- someone who likely already had the ability to view it - and

37% raised more general concerns with sharing their content

with friends. The study concludes that, although Facebook

privacy controls are effective against threat from non-friends,

they are unsuitable for the insider threat (i.e., from friends)

who dynamically become inappropriate audiences based on

the context of a post. Thus, there appears to be a need in

OSNs to dynamically share data based on the knowledge (or
context) related to the data being shared.

We envision a new paradigm of dynamic access control in

OSNs, called social puzzles, which performs access control

based on the knowledge of the shared data and the context

related to it. Nearly all content shared on OSNs is related to

past, present or future events, where each event is associated

with a unique context involving location, time, activities,

participants and preferences. Individuals involved in an event

are presumed to have gained knowledge of the related

context and some of this context may remain the same for

future similar events. This makes sharing data related to

events, of which the associated context is presumed to be

known by the intended audience, a suitable proposition. An

example of this includes sharing messages or pictures of

a past social gathering involving the target audience (who

are also friends on an OSN). The idea of context-based

data sharing is not only restricted to OSNs, but can also be

applied to other data sharing services such as microblogging

services (e.g., Tumblr), photo sharing services (e.g., Picasa

and Instagram) and file storage and sharing services (e.g.,

Dropbox and OneDrive). Other customized applications can

also be envisioned, e.g., data management in a corporate net-

work, where only employees knowing certain work-related

context can get access to certain confidential documents.

Our goal in this work is to design access control mech-

2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-2233-8/14 $31.00 © 2014 IEEE

DOI 10.1109/DSN.2014.38

299

2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-2233-8/14 $31.00 © 2014 IEEE

DOI 10.1109/DSN.2014.38

299

2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-2233-8/14 $31.00 © 2014 IEEE

DOI 10.1109/DSN.2014.38

299

anisms for OSNs using dynamic context-based policies,

which not only seamlessly integrate with existing OSNs,

but also provide resistance against surveillance by service

providers. These new access control mechanisms will com-

plement existing static policies on OSNs, thus providing

users with additional flexibility while sharing data, and will

improve privacy of the shared data without compromising

the utility of the OSN service. One advantage of our

proposed mechanisms is that it will simplify the access

control process in undirected OSNs such as Facebook and

Google+2, especially when access control is required to be

based on the knowledge of the context surrounding the data.

In order to provide such an access control, service provider

and users will no longer be required to maintain complex

and constantly mutating and expanding access control lists

(ACL). Moreover, OSNs with directed social connections

and the ones that provide only very minimalistic access

control mechanisms (e.g., Twitter3) will benefit even more

because the context-based access mechanism will add a layer

of privacy protection.

As access control in OSNs is currently either performed

by the service provider itself, or in some cases by a trusted

third-party [5], [6], [7], they typically have access to the

data being shared or the access control policy used to share

the data. This is not a desirable situation for users who do

not trust the service provider (or third-parties) and want

security against release of data or access control policies

to these parties. Our proposed access control mechanism

only trusts the service provider to execute the access control

protocol honestly; the service provider is able to perform

access control operations without the knowledge of the

data being shared or the context based on which access

control is done. Such a surveillance-resistance property

can prevent service providers from mining user data for

gaining corporate advantage (e.g., targeted advertisements)

or sharing it with other entities (e.g., government monitoring

programs and corporate partners) without user consent.

Another advantage of the proposed context-based access

control mechanisms is improved content-relevance. With an

increasingly large number of online social contacts, OSN

users typically find themselves bombarded with or buried

under a large amount of irrelevant or sparsely relevant

information from their contacts. Good access control in-

herently leads to better content-relevance for OSN users.

Context-based social routing [8] is another effort in this

direction, where each user specifies their interests through

a set of keywords and the data routing algorithm routes

shared objects with relevant context attributes to the users.

We argue that our context-based access control mechanism

will inevitably enforce relevant content being read, because

users cannot access contents with unfamiliar contexts.

2Google+, https://plus.google.com
3Twitter, https://www.twitter.com

Finally, we anticipate that any new access control mech-

anism should be easy to use, else users may continue to

settle for inferior privacy settings. A trivial context-aware

access control scheme can be constructed as follows: sharer

generates a symmetric encryption key (and then encrypts

data) by using all the context associated with the data, while

the receiver regenerates the key (to decrypt the data) by

proving knowledge of the entire context. However, such

a trivial scheme is not useful because most of the times

receivers will not be aware of the entire context related to

the shared data. The proposed mechanisms are much more

flexible and allow the sharer to specify a threshold on the

number or amount of context required to be known by the

receivers before they can access the data. Thus, receivers can

access data by proving only partial knowledge of the related

context. We realize that when it comes to usability, systems

that require complex setup and regular maintenance [9], [10]

are not convenient and/or popular. Thus, our goal is to design

and implement mechanisms that incur low performance

overhead, require little or no maintenance and can be easily

integrated with popular services such as Facebook.

The key contributions of this paper are as follows:

• We propose two novel constructions for context-based

access control to enable private data sharing among

OSN users.

• We demonstrate the feasibility of our constructions by

developing a publicly-available4 proof-of-concept im-

plementation for Facebook. A careful security analysis

under various adversarial scenarios is also performed.

• We empirically evaluate the functionality and perfor-

mance of our implementation for a variety of opera-

tional parameters.

II. RELATED WORK

Each OSN service addresses the problem of data privacy

and access control differently. Facebook, for example, pro-

vides customized ACLs where access to a particular data

object is restricted to only those social contacts that are

present in a user’s ACL. One shortcoming of ACLs is that

they are not very scalable. Increasingly large, and highly

dynamic, list of friends or social contacts can lead to a

burdensome maintenance of such access lists. In Twitter, on

the contrary, there are no privacy constraints and all tweets

are public (by default). Few other researchers have studied

the possibility of role-based [11] and attribute-based [12]

access control in OSNs. But both these schemes require

additional infrastructure and support from the OSN provider,

thus making them less likely to be adopted in practice.

Contrary to these, our proposed access control mechanisms

can be hosted either by the OSN provider or by some other

third-party provider. In our schemes, much of the access

4http://socialpuzzle.cs.wichita.edu/

300300300

control functionality is performed locally on the client on

an on-demand basis, which is more efficient.

A majority of the OSN providers have a “default open”

policy, wherein a lot of sensitive and personal information

about subscribers is available or easily accessible by all other

subscribed users. Security and privacy of user data in OSNs

has received significant attention in the literature, but it still

remains an open problem [13], [6], [14], [15], [16]. Existing

research efforts have primarily focused on: (a) decentralized

OSNs, (b) dedicated infrastructure at the end-user, (c) access

control by trusted third-party, and (d) secure data sharing

using public-key cryptography.

Yeung et al. [13] propose a decentralized approach to

online social networking where each user possesses a trusted

server which stores user-data and enforces pre-defined ac-

cess control policies. Anyone trying to access a user’s

personal data is redirected to the trusted server which first

makes an access control decision. Similarly, in order to view

protected shared objects in Diaspora5, friends would need to

access the user’s personal web server or start using the Dias-

pora service. Dürr et al. [10] propose another decentralized

OSN, called Vegas, which allows secure information sharing

with nearby users. In another related effort, Jagtap et al.

[9] propose a data-on-demand list-based social networking

methodology which abstracts sensor data of mobile devices

by using a “Privacy Control Module” located on the user’s

device. Decentralized mechanisms, however, are not compat-

ible with existing OSN services and they require individual

users to possess dedicated infrastructure for data storage

and access control. Alternatively, a semi-decentralized ar-

chitecture proposed by Carminati et al. [17] reduces client-

side workload and infrastructure requirement, but it needs to

be continuously available. Compared to these, our context-

based access control mechanisms are designed to work

with existing OSN services, without requiring additional

hardware infrastructure and with limited resources (ideal

for resource-constrained mobile devices). To eliminate the

dependence on client-side infrastructure for access control, a

few of the above schemes propose the use of a trusted third-

party. Although the third-party can be trusted to perform

access control correctly, it still needs access to user’s policies

and data, which could open door to surveillance. In our

proposal, we also require a third-party (or OSN) to host the

context-based access control service, but our schemes are

resistant to surveillance by these providers or third-parties.

In order to guarantee confidentiality against service

providers, data has to be encrypted at the client-side (by the

sharer) such that only the intended receiver(s) are able to

decrypt it. Beato et al. [14] achieve this by using OpenPGP.

The authors propose a scheme that is hybrid between the

trusted server and the decentralized approaches. Although

their implementation integrates well with existing OSNs,

5Diaspora, http://www.joindiaspora.com

the usability of their scheme suffers due to the required

public-key management operations. FaceCloak [6] secures

Facebook profile data and messages by using symmetric-

key encryption and storing them on a separate server, while

posting fake information on the actual Facebook profiles.

Contrary to this, the scheme by Beato et al. [16] achieves

privacy by using asymmetric encryption and by anonymizing

user information from the shared data objects. Earlier, Beato

et al. [15] proposed a service provider-independent scheme,

called Scramble!, to assure confidentiality and integrity of

OSN user data. The authors implement a browser extension

that allows users to enforce access control over their data,

as well as, protect it against surveillance and modification

from service providers. Both FaceCloak and Scramble! are

not very easy to use because every friend has to actively

exchange and maintain a set of valid encryption/decryption

keys. In contrast, our mechanisms do not require periodic

and expensive key exchanges. Moreover, we address the

problem of access control based on the knowledge of the

shared data, and not based on the users in the social network.

Most importantly, due to its JavaScript-based implementa-

tion, only a standard web browser (without any additional

installation/configuration) is required for using our scheme.

III. BASICS AND BACKGROUND

Before going into the details, let us briefly outline a

few well-known cryptographic constructions that we use

in our proposals. Our first construction employs Shamir’s

secret sharing scheme (section III-B), whereas our second

construction uses an attributed-based encryption scheme

such as CP-ABE (section III-C). The mathematical notions

of bilinear maps and pairings (section III-A) are useful for

understanding CP-ABE.

A. Bilinear Maps and Bilinear Pairing

Let G0, G1 and G2 be multiplicative cyclic groups of

prime order p. Let g0 and g1 be generators of G0 and G1,

respectively. Let e be a bilinear map from G0 ×G1 to G2,

i.e., e is a function e : G0×G1 → G2, such that for all u ∈
G0, v ∈ G1 and a, b ∈ Zp, e(ua, vb) = e(u, v)ab (bilinearity
property) and e(g0, g1) �= 1 (non-degeneracy property). If

G0 = G1, then the pairing e is symmetric. This is because,

e(ga0 , g
b
0) = e(g0, g0)

a,b = e(gb0, g
a
0).

B. Shamir’s Secret Sharing Scheme

In Shamir’s (k, n) threshold secret sharing scheme [18],

a secret is shared among a set of, say n, participants by

dividing it into parts (or shares) such that each participant

possesses a unique share. The secret can then be recon-

structed from a threshold, say k, number of shares obtained

from the participants. Let’s assume that we want to share a

secret M , where M is an element in the finite field F of size

p (p is a prime s.t. 0 < k ≤ n < p). We create a random

polynomial P ∈ F(x) of degree k by choosing k−1 random

301301301

coefficients in F and P (0) = M . Each of the i = 1 . . . n
participant receives the share (i, P (i)). Now, given any k of

these shares P (s1), P (s2), . . . , P (sk), where sj �= sj′ and

sj , sj′ ∈ {1 . . . n}, the secret P (0) = M (constant term of

P) can be recovered using Lagrange interpolation as:

P (0) =
k∑

j=1

γjP (sj), where γj =
∏
j′ �=j

sj′

sj′ − sj

C. Ciphertext-Policy Attribute-Based Encryption (CP-ABE)

In ciphertext-policy attribute-based encryption (CP-ABE)
[19], a party encrypting a message can specify a policy

(based on attributes describing user credentials) for who can

decrypt. Specifically, the private key (used to decrypt) is

associated with an arbitrary number of attributes. When a

party encrypts a message, he specifies an access structure

over these attributes. Any user can decrypt this message only

if his attributes pass through the ciphertext’s access structure.

CP-ABE consists of the following main procedures.

• Setup: The Key Authority (KA) takes no other input,

except a security parameter, and outputs a public key

PK = G0, g, h = gβ , f = g
1
β , e(g, g)α and a master

secret MK = (b, gα), where G0 is a bilinear group of

prime order p and α, β ∈ Zp.

• Encrypt(PK, M , τ): This algorithm encrypts a mes-

sage M under a policy τ which is represented as a tree

access structure by using the public key PK. Let s (a

random number in Zp) be the secret at the root of the

policy tree, qx be the polynomial of degree dx = kx−1
at the node x where kx is the threshold value at the node

x, Y be the set of leaf nodes in τ and att(y) returns

the attribute of the leaf node y. The ciphertext CT is:

CT = (τ, C̃ = Me(g, g)αs, C = hs,

∀y ∈ Y : Cy = gqy(0), C ′
y = H(att(y))qy(0))

Here, H is a hash function that maps to a random

element in G0, i.e., H : {0, 1}∗ → G0

• KeyGen(MK, S): It takes as input a set of attributes S,

the master secret MK and outputs a key that identifies

with that set. It chooses randoms r ∈ Zp, and rj ∈ Zp

for each attribute j ∈ S and computes the key as:

SK = (D = g(α+r)/β ,

∀j ∈ S : Dj = gr ·H(j)rj , D′
j = grj)

• Decrypt(CT , SK, x): It implements a recursive algo-

rithm DecryptNode(CT , SK, x). For each leaf node

x in τ , DecryptNode pairs Di and D′
i (from SK)

with Cx and C ′
x, resp., to obtain e(g, g)rqx(0) if i ∈ S,

where i = att(x). If i /∈ S, then DecryptNode returns

⊥. For each non-leaf node x in τ , it recursively calls

Decrypt(CT , SK, zj) on all children zj of x. It

then calculates e(g, g)rqx(0) for the non-root node x

by using Lagrange interpolation on at least kx such

e(g, g)rqzj (0) obtained from its children {zj}. If kx
such e(g, g)rqzj (0) are not available then DecryptNode
returns ⊥ for the non-root node x. Decrypt begins by

calling DecryptNode(CT , SK, R) on the root node

R and computes A = e(g, g)rqR(0) = e(g, g)rs. It then

retrieves M by computing C̃/(e(C,D)/A).

IV. MODEL

In this section, we outline details of the system and

adversary model considered in this work.

A. The System

We consider an OSN provider, denoted by SP , where each

subscribing user maintains a list of contacts (or friends) and

uses the OSN platform to store and share digital content

(e.g., status updates, photos, locations, etc.) with his/her

social network. We consider a symmetric social networking

service, i.e, if a user a has another user b in her friend list,

then user b has user a as her friend as well. A popular exam-

ple of a symmetric OSN is Facebook. OSN services usually

maintain a profile and a list of contacts (which includes

relationship type) for each registered user. A profile typically

contains personal information which uniquely identifies the

user. Users can typically add/update their profile information

and access profiles of their contacts at various levels of

granularity, often dictated by the contact’s privacy setting.

We consider a user S, referred to as the sharer, who has a

registered account with the service provider SP . The sharer

S wants to share some data object O, e.g., a picture or video

file, with her contacts (or social network) ST , provided they

have some knowledge of the context related to the sharer

and/or the object O. S is unwilling to share the object with

those contacts who may not know this context. There may

also be contacts who may not be interested in receiving

certain data objects from the sharer without knowing the

related context. Such situations are very common in social

networking or other data sharing applications. For instance, a

user may want to share pictures of a particular private event

with only those contacts who were either at the event or were

invited but missed the event. Some other contacts, such as

professional contacts, may not be interested in viewing the

sharers’ personal event pictures or it may be inappropriate

for the sharer to share those with them.

The context CO related to an object O can be formu-

lated as a set of N key-value (or question-answer) pairs

{〈q1, a1〉, 〈q2, a2〉, . . . , 〈qN , aN 〉}. Without loss of general-

ity, let us assume that each context can be represented by

exactly N key-value pairs. Each key qi typically defines a

domain with the corresponding ai taking exactly a single

value (from that domain). For each shared object O, the

sharer S typically sets a threshold ζO on the minimum

number of key-value pairs that should be known to the

receiver before she can access O. Let RO ⊆ ST be the

302302302

set of S’s contacts that know the ai values corresponding to

at least ζO qis related to an object O. Thus, users in RO are

said to “know” the context. Without loss of generality, let’s

assume that ζO = k, for some k < N for all objects O.

The shared object O is stored in an encrypted form on a

storage service denoted as DH . Details of the encryption

strategy will be clear soon. The storage service DH is

logically separate from SP , but physically, it can either be

co-located with the SP or hosted by a different third-party

provider such as Dropbox6. The encrypted object stored on

the DH is publicly accessible by means of a unique URI or

web resource locater denoted as URLO.

B. The Adversary

We want to protect against the unauthorized disclosure of

the sharer’s object O to the following entities: (i) all users

(including users in the sharer’s social network ST − RO)

who do not know the context (have knowledge of less than

ζO key-value context pairs), and (ii) the SP and the DH ,

if they do not know the context. Although our scheme is

general enough and can protect against any entity that does

not know the context, we focus here only on those users that

belong to the sharer’s social network. We rely on the social

network service’s access control policies to protect against

users outside the sharer’s social network.

Access (or non-access) for an object O granted to users

in the sharer’s social network, based on amount of context

known, is referred to as the access control property, whereas,

preventing disclosure of the object O to the hosting ser-

vices, such as SP and DH , is referred to as the surveil-
lance resistance property. Context-based access control and

surveillance resistance are the two main requirements of the

proposed system. We assume that users who do not know

the context, i.e., all users in ST − RO, can collude with

each other. However, there is no collusion between users in

RO and users in ST −RO, as otherwise the access control

property can be trivially compromised.

We also assume that entities who do not know the context,

including SP and DH , do not perform active attacks. One

example of such an attack is compromising accounts of

users in RO in order to obtain context CO related to an

object O. All entities that desire access to the object O
will first interact with the access control protocol who will

verify the context known by the entity, and accordingly,

either enable or disable access to O. Malicious users (except,

SP and DH) may attempt to circumvent the operation of

the access control protocol by manipulating inputs to the

protocol or learn from the intermediate outputs. Finally, we

assume that the SP and DH execute the access control

protocol truthfully. Due to business and legal consequences

resulting from malicious behavior, such a semi-honest model

is a practical assumption for the service provider.

6Dropbox, https://www.dropbox.com

V. CONSTRUCTION

We propose two novel constructions for context-based

access control in OSN services. These mechanisms are

implemented as puzzles, referred to as social puzzles, where

users willing to access a particular object are presented with

a series of questions based on the context related to the

object. Only those users that know the context (i.e., solve the

puzzle) are able to access the object. Our first construction

makes an elegant use of Shamir’s secret sharing scheme

[18], while the second construction uses an attribute-based

encryption scheme such as CP-ABE [19].

A. Construction 1

Let F be a finite field of size p (where, p is a prime). Let,

H be a cryptographically secure hash function and let E
be a secure symmetric cryptosystem. Our first construction

(Fig. 1) consists of the following subroutines.

Sharer (S)

Storage Service (DH)

Service Provider
(SP)

Data (O)

1. Upload (O,k,n)

Puzzle (ZO)

Encrypted
Data ()

5. Access(� � , ��(�) ⊕ ��(�)

�� , … ,	
��)

Sharer’s Social
Network (ST)

O
K
O

Figure 1. Construction 1

• Upload (O, k, n): The Upload subroutine is executed

by the sharer S to create a social puzzle and to securely

upload the object O on the storage service DH . S first

determines a k and n ≤ N such that 0 < k ≤ n < p.

Recollect that k is the minimum number of key-value

pairs that should be known to a user before he/she can

access the object O and N is the maximum number of

context key-value pairs available for the object O. S
then creates a random polynomial P ∈ F(x) of degree

k by choosing k − 1 random coefficients in F and a

random constant term P (0). The constant term of the

polynomial P is used as the object-specific secret by S,

i.e., P (0) = MO. S then computes the object-specific

secret encryption key KO by using a cryptographically

secure hash function H , i.e., KO = H(MO). S then

encrypts O using the key KO, i.e, OKO
= E(O,KO),

and stores the encrypted object OKO
on the storage

service DH at location URLO. S then prepares n
random shares of MO = P (0) as dMO

1 = 〈s1, P (s1)〉,

303303303

dMO
2 = 〈s2, P (s2)〉, . . . , dMO

n = 〈sn, P (sn)〉, where

each si is chosen at random. S then creates a social puz-

zle ZO for controlling access to O by using the context

CO of O. Specifically, the puzzle ZO is formed using

exactly n ≤ N question-answer pairs {〈qi, ai〉} ⊆ CO

and a puzzle specific key KZO
, and is shown below:

ZO =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈q1, H(a1,KZO
), a1 ⊕ dMO

1 〉,
〈q2, H(a2,KZO

), a2 ⊕ dMO
2 〉, . . . ,

〈qn, H(an,KZO
), an ⊕ dMO

n 〉,
n, k,KZO

, URLO

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

S then uploads ZO to the service provider SP .

• DisplayPuzzle (ZO): For each puzzle ZO, DisplayPuz-
zle is executed by the OSN provider SP for all the users

u in S’s social network, i.e., ∀u ∈ ST . The subroutine

first randomly picks an integer r : k ≤ r ≤ n. For the

object O uploaded by S, SP selects a permutation σ
of numbers from 1 to r and displays qσ(1), qσ(2), . . . ,
qσ(r), KZO

to all users u ∈ ST .

• AnswerPuzzle (qσ(1), qσ(2), . . . , qσ(r), KZO
): On

receiving the puzzle questions qσ(1), qσ(2), . . . , qσ(r),
each user u ∈ ST , if she wishes to access

the object O, responds with the hash of the an-

swers to the corresponding questions, i.e., hσ(1) =
H(a′σ(1),KZO

), hσ(2) = H(a′σ(2),KZO
), . . . , hσ(r) =

H(a′σ(r),KZO
). Obviously, if the user knows the

correct answer aσ(j) to a question qσ(j), then

H(a′σ(j),KZO
) = H(aσ(j),KZO

).
• Verify (u, hσ(1), hσ(2), . . . , hσ(r)): In response to a

puzzle ZO and displayed questions qσ(1), qσ(2), . . . ,
qσ(r), SP receives hσ(1) = H(a′σ(1),KZO

), hσ(2) =
H(a′σ(2),KZO

), . . . , hσ(r) = H(a′σ(r),KZO
) from a

user u ∈ ST . For each j (0 ≤ j ≤ r), SP verifies if

hσ(j) = H(aσ(j),KZO
). If at least k such verifications

are successful, then SP sends 〈σ(j), aσ(j)⊕ dMO

σ(j)〉 for

each correctly answered question qσ(j) to u. In addition

to this, SP also sends URLO to u. Otherwise, if less

than k verifications are successful, then SP does not

send anything and ends the protocol with the user u.

• Access (〈σ(j), aσ(j)⊕dMO

σ(j)〉, . . . , URLO): On receiv-

ing URLO, the user u ∈ RO downloads the encrypted

object OKO
from URLO. The user u further obtains

the k shares dMO

σ(j) by computing aσ(j)⊕(dMO

σ(j)⊕aσ(j)).
Once k shares are obtained, u reconstructs the object-

specific secret MO by using Lagrange basis polynomi-

als as discussed in III-B. Once the object-specific secret

MO is reconstructed, u computes KO = H(MO) and

obtains the object O = D(OKO
,KO), where D is the

decryption function of the symmetric cryptosystem.

B. Construction 2

Our second construction is shown in Fig. 2. As we have

already summarized CP-ABE in III-C, here we only outline

how we utilize CP-ABE to construct efficient social puzzles.

Before providing details, let us describe the access tree

Sharer (S)

Storage Service (DH)

Service Provider
(SP)

Data (O)

3. Perturb �

�’, PK, MK

�’

Sharer’s Social
Network (ST)

2. Encrypt

7. AccessData

9.
 K

ey
G

en

1. Setup

Figure 2. Construction 2

used in this construction. In CP-ABE, an access control

policy is encoded as an access tree where non-leaf nodes

are represented by threshold gates. Each threshold gate is

described by its children and a threshold value (threshold

value is less than or equal to the number of children). The

leaf nodes describe attributes and have a threshold of one.

A leaf node is satisfied if the attribute input by the user

matches the attribute assigned to the leaf node. A non-leaf

node is satisfied when at least a threshold of its children

nodes are satisfied. An access tree is satisfied if and only

if the root node is satisfied. Further details can be found in

[19]. We now present the details of our second construction.

As before, let’s assume that S wants to share an ob-

ject O with all users in her social network ST who

know the context CO about that object. Let the context

CO be defined by a total of N question-answer pairs

{〈q1, a1〉, 〈q2, a2〉, . . . , 〈qN , aN 〉}. The sharer S chooses a

threshold k for the object O and creates an access tree

structure τ . The access tree τ is a monotonic tree structure
of height 1, as shown in Fig. 3, with a root node and N leaf

nodes, where the attributes of each leaf node τq(i) are set to

the values qi and ai. The sole purpose of τ is to enable S to

encrypt object O with context attributes (qi, ai). S encrypts

the object O using the CP-ABE Encrypt(PK, O, τ) routine

to produce the ciphertext CT , as outlined in III-C.

In order to effectively use CP-ABE in our proposal, a

minor tweak is required. The access tree τ in our proposal is

first perturbed by replacing the answer attributes ai with the

corresponding hash values H(ai) to produce the perturbed
access tree τ ′, as illustrated in Fig. 4. Then, S replaces the

access tree τ encoded in the cipher text CT by the perturbed

access tree τ ′ to produce the ciphertext CT ′. As we will see

later, this is done to prevent the DH from learning the actual

access tree τ containing the answers (required to know the

304304304

context CO). S then uploads τ ′, public key PK and master

key MK to SP , and CT ′ to DH . SP shares PK and MK
with all users, including the ST .

Max. = N
Threshold = k

Max. = 1
Threshold = 1

Attr 1 = q1
Attr 2 = a1

Max. = 1
Threshold = 1

Attr 1 = q2
Attr 2 = a2

Max. = 1
Threshold = 1

Attr 1 = qN
Attr 2 = aN

…..

Root node

N leaf nodes

Figure 3. Access tree structure τ for Construction 2

SP then displays the questions qi in τ ′ to users in ST . On

viewing these questions, users in ST can choose to respond

with a set S
′ containing the corresponding hashed answer

attributes. The SP matches the hashed answers in S
′ (sent

by some user in ST) to the hashes of answers in τ ′. If the

number of matches satisfies the threshold ζO (= k), the SP
replies back with URLO that points to CT ′ stored in DH .

After downloading CT ′, the receiving user in ST attempts

to (partially) reconstruct τ (from τ ′ in CT ′), by replacing

at least k hashed answer attributes H(ai) in τ ′ with their

respective real answers ai. This reconstructed access tree is

denoted by τ̂ . The receiver replaces τ ′ in the CT ′ obtained

from the DH with τ̂ to obtain ĈT (or reconstructed CT).

Max. = N
Threshold = k

Max. = 1
Threshold = 1

Attr 1 = q1
Attr 2 = H(a1)

Max. = 1
Threshold = 1

Attr 1 = q2
Attr 2 = H(a2)

Max. = 1
Threshold = 1

Attr 1 = qN
Attr 2 = H(aN)

…..

Root node

N leaf nodes

Figure 4. Pertubed access tree structure τ ′

The receiver then runs the publicly known KeyGen(MK,

S) algorithm with the real answer attribute set S and master

key MK to obtain the private key SK that identifies with

the set S. With ĈT and SK computed from the previous

step, users can run Decrypt(ĈT , SK) subroutine to reveal

the original shared object O. Below, we only describe

the two new algorithms in our construction 2, namely,

Perturb and Reconstruct, because the CP-ABE algorithms

Setup, Encrypt, KeyGen and Decrypt are used without

any changes. Moreover, DisplayPuzzle, AnswerPuzzle and

Verify operate in a similar fashion as the first construction.

• Perturb (τ): It takes as input a monotonic tree τ of

height 1 with N leaf nodes, and each leaf node con-

taining one question attribute qi and the corresponding

answer attribute ai. It replaces the ai in each leaf node

with its cryptographically secure hash value H(ai). The

resulting perturbed tree τ ′ is sent to SP and embedded

in cipher text CT ′ which is sent to the DH .

• Reconstruct (τ ′): On receiving the perturbed tree τ ′,
this algorithm (partially) reconstructs τ by correctly

replacing at least k H(ai)s with their corresponding

ai. This reconstructed tree τ̂ then replaces τ ′ in cipher

text CT ′, which can then be used for decryption.

VI. SECURITY ANALYSIS

In this section, we analyze our constructions under semi-
honest and malicious adversarial scenarios. As the two con-

structions are similar, except the secret key reconstruction

and encryption/decryption part, we initially focus only on

construction 1. Later, we outline major differences from the

security perspective with construction 2.

A. Adversarial Service Provider

For a puzzle ZO, first let us consider the semi-honest case

where SP honestly executes the protocol, but wants to reveal

the object O. As SP knows URLO, she can download the

encrypted object OKO
from the storage service DH . If the

SP knows the context CO, i.e., knows at least ζO = k
answers to the puzzle, she like any other user in RO can

reconstruct the encryption key KO and reveal the object O.

But if SP does not know the context, she will be unable

to reconstruct the key KO (and thus unable to reveal the

object O) due to the information-theoretic security of the

Shamir’s secret sharing scheme. Due to the cryptographic

security of the hash function H , the SP is unable to recover

the individual answers ai from the hash values H(ai,KZO
)

(both, the ones provided by the sharer in ZO and the replies

received from the receivers) and KZO
. Moreover, as the

shares dMO
i are randomly generated, and unknown to the

SP , she is unable to recover the individual answers ai from

the blinded values ai ⊕ dMO
i . The SP does not receive

any other information, either directly or indirectly due to

protocol execution, from the participants which could be

used to decrypt the encrypted object OKO
.

Next, let us consider a few scenarios where the SP
behaves maliciously. As O is not located on the SP , she

cannot remove it. But, she can modify URLO in ZO to

cause a denial of service (DOS). Such DOS attacks can be

prevented by signing the URLO in ZO with the sharer’s

private key, which can be verified by the recipients before

downloading the encrypted object OKO
. The SP can also

305305305

modify the questions qi and the puzzle-specific key KZO

resulting in a denial of service. For example, modifying KZO

will just change the hash values H(ai,KZO
) provided by the

receivers, and will give no advantage to the SP in recovering

ai from the corresponding hash values. Such unauthorized

modifications by the SP can be overcome by including the

sharer’s signature for each of these components within ZO.

B. Adversarial Storage Service

Similar to the SP , the DH cannot recover the object O
from the encrypted object OKO

without the secret encryption

key KO (or the object-specific secret MO). Moreover, the

security of Shamir’s secret sharing scheme will prevent the

DH from reconstructing the secret MO, and thus the en-

cryption key KO, without the knowledge of the context CO.

However, a malicious DH can tamper, remove or modify

OKO
resulting in a DOS attack. Unauthorized modification

of the encrypted object can be detected by means of a

signature (generated using the sharer’s private key) that can

be stored within the puzzle ZO.

C. Collusion Attacks

First, let us consider collusion between entities who do

not know the context (e.g., SP , DH and users in ST −RO)

and those who know it (e.g., users in RO). In this case, those

who know the context CO (at least ζO correct answers), the

encryption key KO or the decrypted object O can trivially

share these with others through a covert communication

channel. Such a form of collusion is extremely difficult to

protect against. Sharers can periodically modify the puzzle

ZO and/or the encryption key KO (by re-encrypting the

object) to partially protect against such collusion attacks.

Next, let us consider collusion between users who do not

know the context CO (i.e., users in ST−RO) and a malicious

service provider SP who also does not know the context.

More specifically, each user in ST −RO may not know the

context CO completely, but they may partially know it, i.e.,

less than ζO correct answers. Then, a malicious SP can

collude with a set of these users in ST − RO and let them

know through a covert channel the responses that verified

correctly (despite the fact that each user would have less

than ζO correct responses). On receiving the verification,

this set of users could collaboratively determine a list of at

least ζO correct answers, which can be then used to retrieve

the object-specific secret MO, and thus, the decryption

key KO. We assume a semi-honest SP that follows the

protocol truthfully, and thus, our scheme is not secure against

this extremely strong collusion scenario. Nevertheless, our

scheme is secure against collusion among users in ST −RO,

provided the service provider SP honestly executes the

protocol. Our construction is also secure against collusion

between SP and DH , provided they collectively do not

know the context CO and they do not collude with any users.

The above analyses for non-colluding SP and DH also

holds for construction 2, especially in the semi-honest case.

As the DH and SP only possess the perturbed access

tree τ ′, the security of the cryptographic hash function will

prevent efficient reconstruction of the original access tree

τ without the knowledge of the context CO. Moreover, we

rely on the security guarantee of CP-ABE [19], which will

prevent correct construction of the private key SK, and

thus decryption of the ciphertext CT , without knowledge

of the context CO. Both SP and DH can act maliciously

and achieve denial of service by manipulating the perturbed

tree τ ′, public key PK, master key MK and the perturbed

ciphertext CT ′. Nevertheless, DOS attacks are beyond the

scope of the current work. In the case when SP colludes

with users in ST−RO, Construction 2 suffers from the same

weakness as construction 1. However, similar to construction

1, it is secure against collusion between the SP and the DH ,

provided they both collectively do not know the context.

VII. IMPLEMENTATION

In this section, we outline implementation details of our

constructions. We have implemented both constructions as

third-party Facebook applications hosted on Amazon EC2

[20]. It should be noted that for demonstration purposes our

application is hosted on a third-party provider such as Ama-

zon EC2, rather than on an actual OSN provider. However,

such an access control service can also be easily adopted

(and hosted) by a popular OSN provider such as Facebook.

Until then, existing Facebook users can take advantage

of the proposed access control mechanisms by means of

our publicly-available third-party application which can be

hosted on a third-party provider of their choice.

Common features: Both implementations are interfaced

with a Facebook canvas application. The sharer is required

to grant permission to the application in order to post objects

on Facebook. For simplicity, currently in our implementa-

tions the service provider SP and the storage service DH
are located on the same server, but it can be easily extended

to have both of them on physically separate servers. In order

to provide confidentiality and authentication, all communi-

cations between users and our application on Amazon EC2

is carried over HTTPS.

A. Details of Implementation 1

The first implementation works across platforms and uses

mostly JavaScript and HTML on the client end. All sharing

and retrieving actions are performed in a JavaScript and

cookie enabled web browser. Neither the sharer, nor the

receiver, needs to install any additional supporting software.

Our application enables users to use the access control

functionality without leaving Facebook and offers a smooth

and easy-to-follow interface. GibberishAES [21] is used for

JavaScript-based symmetric encryption. All hash values are

computed using SHA3 implementation of CryptoJS [22].

306306306

Sharing content: For sharing a new object, the appli-

cation presents an HTML form (Fig. 5) to the sharer for

inputting the object to be shared, context questions and

corresponding answers. It requires the sharer to input the

value of the threshold k and automatically detects the total

number of contexts N by counting the number of question-

answer pairs entered by the sharer. When the sharer submits

this information, a JavaScript function is invoked to perform

a number of client-side operations. This function computes

a random secret MO, corresponding hash KO, and a puzzle

specific key KZO
. Then, the object is encrypted using AES

encryption with key KO. Shamir’s secret sharing algorithm

is executed on MO, and the obtained shares are XOR

encoded with the context answers entered in the HTML

form. The hash values of the answers concatenated with the

puzzle-specific key KZO
are also computed. This completes

the client-side computations for the sharer. The puzzle ZO

is then uploaded to the application server on Amazon EC2.

Figure 5. Impl. 1: HTML form with input boxes for message, associated
contexts, corresponding questions and threshold k

The server component of the application maintains a

MySQL database for storing information about all the puz-

zles. On receiving a new puzzle from a sharer, the server

component adds a new entry in the MySQL puzzle table

with a unique puzzle identifier. This identifier is then used to

generate a hyperlink or URI which is posted on the sharer’s

Facebook profile (to the sharer’s social network). The sharer

can also choose to impose an additional layer of privacy

control by means of Facebook’s privacy settings (Fig. 6).
Receiving content: Sharer’s friends (or receivers) who

see the above post are expected to click on the hyperlink,

if they wish to access the shared data object. This leads the

receivers to an interface, where the server fetches the puzzle

from the database and presents them with a randomized

set of questions from the puzzle (Fig. 7). An HTML form

to accept input from the receivers is also displayed. On

receiving the answers to the questions from the receiver, a

JavaScript subroutine (at the receiver) writes all the answers

to a local cookie file. Another JavaScript function overwrites

Figure 6. Impl. 1: A sample post made on Facebook

the answer fields in the HTML form with the corresponding

hash values. These hashes are then sent to the server.

Figure 7. Impl. 1: Encryption key is reconstructed from puzzle answers
and message is revealed

The server component of the application matches the

hashed answers from the receiver to the hashed contexts

stored in the database. If the threshold is not satisfied, the

server displays an error message. If the threshold is satisfied,

the server redirects the receiver to the encrypted object. The

receiver also receives values of the shares encoded (XOR’ed)

with the correct context answers. On receiving these encoded

shares and the encrypted object, the receiver first retrieves

the actual answers from the cookie file. Then, the answers

are XORed back with the encoded shares to retrieve the

original shares. The original random secret MO is then com-

puted from the shares using Lagrange polynomials. After

calculating KO from MO, AES decryption is performed to

reveal the encrypted object.

B. Details of Implementation 2

Our second implementation uses the publicly-available

CP-ABE implementation. As the CP-ABE toolkit is cur-

rently available only for the Linux platform, this imple-

mentation is restricted only to those users (both sharers

307307307

and receivers) who operate a Linux system pre-installed

with the CP-ABE toolkit. Moreover, as it is currently diffi-

cult to invoke CP-ABE library functions directly from the

browser, users may have to switch between the browser and

stand-alone components of the implementation in order to

complete the access control functionality. This may create

discontinuity in user-interaction flow while using the appli-

cation. This could be addressed by developing a browser

plugin that interacts with CP-ABE libraries from within the

browser. Another issue that we encounter in this imple-

mentation is that the encoding of the access tree τ within

the ciphertext CT is not known, thus preventing us from

perturbing and reconstructing the access tree. To overcome

this problem, we currently do not remove the original access

tree τ from the ciphertext CT before storing it on the server.

This action affects the surveillance resistance property (only

in the implementation), but not the core access control

functionality. These implementation shortcomings in our

current version will be addressed in the future. Lastly, we

compute all hash values in this implementation using SHA1

(available with OpenSSL [23]). For GUI, we use the Qt

widget toolkit application framework [24].

Sharing content: In order to share a new object, the

sharer executes a client-side Qt application. This application

takes as input the object to be shared, associated context

questions and corresponding answers, value for the number

of contexts N , and value for the threshold k (Fig. 8). The

object is stored in a file named message.txt. The values of N
and k, the questions and the hashes of answers are written

to another file details.txt. The cpabe-setup function is called

in the background to generate master key file master key
and public key file pub key. Then, the cpabe-enc process

encrypts message.txt and replace it with message.txt.cpabe.

The cURL [25] library is invoked to upload details.txt,
master key, pub key, and message.txt.cpabe to the server

component of the application running on the Amazon EC2

server. If all files are uploaded successfully, the server appli-

cation assigns the puzzle a unique post (or puzzle) identifier.

The server stores the hashes of all the context answers (along

with the post identifier) in a database and deletes these

hashes from details.txt. A reply is sent back to the client-

side application containing the post identifier. The client-side

application prompts the sharer to copy the post identifier

and pass it to a Facebook canvas application (similar to the

first construction). The Facebook application reads the post

identifier using JavaScript, generates a hyperlink similar to

the first implementation, and shares it on Facebook to the

sharer’s social network.

Receiving content: Sharer’s friends (or receivers) who

see the above hyperlink are expected to click on it, if they

wish to access the shared data object. This leads them to

the Facebook application, where the server displays the post

identifier and prompts the receiver to copy the post identifier

and pass it to a client-side Qt application for receivers. Once

Figure 8. Impl. 2: Sequential interaction with sharer

the Qt application reads the post identifier, it downloads the

corresponding details.txt file (with omitted hashed answers)

from the server using the cURL library. The application then

reads details.txt and presents prospective receivers with the

questions from it. After the receiver answers the questions,

the application computes the hash values of answers and

sends them back to the server for verification. If less

than k hashed answers matches, an error message will be

returned. If verification succeeds, the server gives access to

message.txt.cpabe, master key, and pub key files. The Qt

application downloads these three files using cURL. The

application inputs the earlier user entered answers to the

cpabe-keygen function in order to generate the decryption

key file my priv key. The my priv key, master key, and

pub key files are used to decrypt message.txt.cpabe by using

the cpabe-dec function. Finally, the Qt application displays

the contents of message.txt to the receiver (Fig. 9).

Figure 9. Impl. 2: Receiver solving a puzzle and reading the message

VIII. EVALUATION

In this section, we present an evaluation of preliminary

performance-related measurements that we obtained by ex-

ecuting our applications in a controlled setting as well as

a discussion of usability issues related to our proposed

solution.

308308308

Experimental setup: For both implementations, we use

a common PC hardware comprising of a quad core 2.5 GHz

CPU, 1GB RAM and a 802.11n WLAN interface operating

at 60 Mbps. The system is running a Ubuntu version 13.04

OS. Additionally, performance of the first implementation

was assessed on a Nexus 7 tablet, and compared with the

performance on the PC. Latest versions of Firefox browser

were used on both devices. The second implementation

could not be benchmarked on the tablet because of its

Linux dependency. Experiments were performed for mes-

sage lengths of 100 characters, answers of 20 characters and

questions of 50 characters long. Measurements were taken

for varying number (N) of contexts, while the threshold k
is set to 1. As CP-ABE does not support (1,1) threshold,

observations start from N = 2. We do not include user

interaction time in our observations.

Implementation 1 vs. Implementation 2 on PC: Figure

10(a) and 10(b) shows the breakdown of the local processing
delay and network delay (including server-side processing)

for the sharer and the receiver, respectively. The network

delay of Implementation 2 (I2) is worst as compared to

Implementation 1 (I1). For each upload by the sharer in

I2, the cURL library is used to upload four different CP-

ABE related files (total ∼600KB in size) to the server. The

network delay observed for I2 (Figure 10(a)) is both, due

to this considerably large amount of data being transferred

between the client and the server, as well as, due to

the additional overhead caused by the cURL library. The

instability in the measurements, which mostly shows an

increased delay with increasing context size, seems to be due

to the unpredictability of the communication network speed.

Also, I2 has slightly higher local processing delay because

of the greater computational complexity of CP-ABE. The

combined delay in I1 is extremely low for both sharer and

receiver, while for I2 it is noticeably high at the sharer and

comparatively lower at the receivers.

PC vs. Tablet for Implementation 1: Figure 10(c) and

10(d) shows the breakdown of local processing delay and

network delay for sharer and receiver, respectively. We ob-

serve that I1 performs better on PC than on tablet. However,

the overheads are insignificantly low on both devices.

Usability Aspects: By means of the implemented

Facebook-compliant prototypes, our goal was to validate

the effectiveness and efficiency of the proposed access

control mechanisms. We observed from our experimental

evaluations that users can successfully and efficiently share

data on the Facebook OSN using our prototype applications.

However, currently we have no evidence on of how intuitive

the idea of context-based sharing is to OSN users and

what features OSN users expect in such an application.

As with any online service, it is vital to understand the

related usability aspects of the proposed paradigm in order

to improve its practical feasibility, i.e., who, where and

how such applications will be used. To evaluate application

usability, feedback gathering activities such as focus groups,

surveys, user-experience studies and ergonomic assessments

can be conducted. The ISO standard 9241 Part 11 [26]

provides specific guidelines for evaluating applications in-

volving human-computer interactions with respect to the

goals of effectiveness, efficiency and satisfaction. In order

to improve the usability of our applications, we intend to

conduct an on-campus survey and user-study by following

the guidelines set forth in the ISO standard 9241. We

also plan to add additional features to our applications,

e.g., support for non-textual data, picture-based puzzles and

automated client-side context recommendations, to improve

its ease-of-usage and to enhance user-experience.

IX. CONCLUSIONS

In this paper, we proposed and implemented two novel

context-aware access control mechanisms which empowers

users to regulate access to their shared data in OSN ser-

vices. Instead of controlling access to shared data based

on users or user-attributes, the proposed mechanisms focus

on controlling access to data based on the knowledge of

the context associated with the data. By means of the

proposed mechanisms, OSN users can not only enable fine-

grained access control and improve relevance of the shared

data, but also protect it against surveillance from curious

service providers. We analyzed the security of the proposed

mechanisms under various passive and active adversarial

scenarios. We also verified the correctness and performance

of our implementations by means of empirical evaluations.

ACKNOWLEDGMENT

The authors would like to thank all the anonymous

reviewers for their insightful comments and suggestions.

REFERENCES

[1] G. A. Fowler, “Facebook: One Billion and Counting,” The
Wall Street Journal, October 2012.

[2] R. Gross and A. Acquisti, “Information revelation and privacy
in online social networks,” in Proceedings of WPES ’05, 2005.

[3] “Facebook privacy settings.” [Online]. Available: https:
//www.facebook.com/settings?tab=privacy

[4] M. Johnson, S. Egelman, and S. M. Bellovin, “Facebook
and privacy: It’s complicated,” in Proceedings of SOUPS ’12,
2012.

[5] A. Tootoonchian, S. Saroiu, Y. Ganjali, and A. Wolman,
“Lockr: better privacy for social networks,” in Proceedings
of the 5th international conference on Emerging networking
experiments and technologies, 2009.

[6] W. Luo, Q. Xie, and U. Hengartner, “Facecloak: An ar-
chitecture for user privacy on social networking sites,” in
Proceedings of IEEE CSE ’09, 2009.

309309309

(a) Sharer’s Overhead: I1 vs. I2 on PC (b) Receiver’s Overhead: I1 vs. I2 on PC

(c) Sharer’s Overhead: PC vs. Tablet for I1 (d) Receiver’s Overhead: PC vs. Tablet for I1

Figure 10. Performance Measurements

[7] M. M. Lucas and N. Borisov, “Flybynight: mitigating the pri-
vacy risks of social networking,” in Proceedings of WPES’08,
2008.

[8] V. Pouli, J. S. Baras, and A. Arvanitis, “Increasing message
relevance in social networks via context-based routing,” in
Proceedings of MSM workshop, 2012.

[9] P. Jagtap, A. Joshi, T. Finin, and L. Zavala, “Preserving
privacy in context-aware systems,” in Proceedings of ICSC
’11, 2011.

[10] M. Dürr, F. Gschwandtner, C. K. Schindhelm, and
M. Duchon, “Secure and privacy-preserving cross-layer ad-
vertising of location-based social network services,” in Mobile
Computing, Applications, and Services, 2012.

[11] J. Li, Y. Tang, C. Mao, H. Lai, and J. Zhu, “Role based
access control for social network sites,” in Proceedings of
IEEE JCPC’09, 2009.

[12] S. Jahid, P. Mittal, and N. Borisov, “Easier: Encryption-based
access control in social networks with efficient revocation,”
in Proceedings of ACM ASIACCS’11, 2011.

[13] C.-m. A. Yeung, I. Liccardi, K. Lu, O. Seneviratne, and
T. Berners-Lee, “Decentralization: The future of online social
networking,” in W3C Workshop on the Future of Social
Networking Position Papers, 2009.

[14] F. Beato, M. Kohlweiss, and K. Wouters, “Enforcing access
control in social network sites,” Katholieke Universiteit Leu-
ven, Belgium, 2009.

[15] ——, “Scramble! your social network data,” in Proceedings
of PETS’11, 2011.

[16] F. Beato, I. Ion, S. Čapkun, B. Preneel, and M. Langheinrich,
“For some eyes only: protecting online information sharing,”
in Proceedings of ACM CODASPY’13, 2013.

[17] B. Carminati, E. Ferrari, and A. Perego, “Enforcing access
control in web-based social networks,” ACM TISSEC, 2009.

[18] A. Shamir, “How to share a secret,” Comm. of ACM, 1979.

[19] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-Policy
Attribute-Based Encryption,” in IEEE S & P ’07, 2007.

[20] “Amazon EC2.” [Online]. Available: http://aws.amazon.com/
ec2

[21] M. Percival, “GibberishAES.” [Online]. Available: https:
//github.com/mdp/gibberish-aes

[22] “CryptoJS.” [Online]. Available: https://code.google.com/p/
crypto-js

[23] “OpenSSL.” [Online]. Available: http://www.openssl.org

[24] “Qt project.” [Online]. Available: http://qt-project.org

[25] “cURL.” [Online]. Available: http://curl.haxx.se

[26] ISO 9241-11:1998 - Ergonomic requirements for office work
with visual display terminals (VDTs) - Part 11: Guidance on
usability.

310310310

